• Как происходит выделение ненужных веществ у растений


    Как происходит выделение вредных веществ у растений?

    Через устьица и чечевички коры, например березы, из растения удаляется углекислый газ.

    Выделение сахаров у растений осуществляется специальными образованиями — нектарниками. У большинства растений они находятся в цветках, а у некоторых — на стеблях и листьях. Нектар обладает бактерицидными свойствами и защищает завязь цветка от микроорганизмов. К тому же нектар наряду с окрашенным венчиком и ароматом цветков является важным приспособлением для привлечения насекомых, осуществляющих перекрёстное опыление.

    Через специальные железы растений в атмосферу выделяются летучие вещества, в том числе эфирные масла. К эфиромасличным растениям относятся пеларгония, мята, мелисса, эвкалипт. Многие из них используются в лекарственных целях, а также для ароматизации продуктов, изготовления парфюмерной продукции.

    Опавшие листья растений содержат неорганические и органические вещества и представляют собой очень ценное удобрение. Поэтому садоводы закладывают листья в компостные кучи. Благодаря опавшим листьям почва в лесу ежегодно обогащается перегноем. Вот почему их не надо жечь. Вполне понятно, что сбор опавших листьев и вообще удаление лесной подстилки в лесу отрицательно сказываются па жизни деревьев.

    Выделение у растений и животных

    • ГДЗ
    • 1 Класс
      • Окружающий мир
    • 2 Класс
      • Математика
      • Английский язык
      • Русский язык
      • Немецкий язык
      • Литература
      • Окружающий мир
    • 3 Класс
      • Математика
      • Английский язык
      • Русский язык
      • Немецкий язык
      • Окружающий мир
    • 4 Класс
      • Математика
      • Английский язык
      • Русский язык
      • Немецкий язык
      • Окружающий мир
    • 5 Класс
      • Математика
      • Английский язык
      • Русский язык
      • Немецкий язык
      • Биология
      • История
      • География
      • Литература
      • Обществознание
      • Человек и мир
      • Технология
      • Естествознание
    • 6 Класс
      • Математика
      • Английский язык
      • Русский язык
      • Немецкий язык
      • Биология
      • История
      • География
      • Литература
      • Обществознание

    Выделение

    Эволюция выделительной системы

    В процессе эволюции продукты выделения и механизмы их выведения из организма сильно изменялись. С усложнением организации и переходом в новые среды обитания наряду с кожей и почками появлялись и другие органы выделения или выделительную функцию начинали вторично выполнять уже имеющиеся органы. Выделительные процессы у животных связаны с активизацией их обмена веществ, а также гораздо более сложными процессами жизнедеятельности.

    Простейшие освобождаются путём диффузии их через мембрану. Для удаления излишка воды простейшие имеют сократительные вакуоли. Губки и кишечнополостные — продукты обмена удаляют тоже путём диффузии. Первые выделительные органы самого простого строения появляются у плоских червей и немертин. Они носят название протонефридиев, или пламенные клетки. У кольчатых червей в каждом сегменте тела имеется по паре специализированных выделительных органов — метанефридиев. Органами выделения ракообразных являются зелёные железы, расположенные у основания антенн. Моча накапливается в мочевом пузыре, а затем изливается наружу. У насекомых имеются мальпигиевы трубочки, открывающиеся в пищеварительный тракт. Выделительная система у всех позвоночных в основных чертах одинакова: она состоит из почечных телец — нефронов, с помощью которых из крови удаляются продукты метаболизма. У птиц и млекопитающих в процессе эволюции выработалась почка третьего типа — метанефрос, канальцы которой имеют два сильно извитых участка (как у человека) и длинную петлю Генле. В длинных участках почечного канальца происходит обратное всасывание воды, что позволяет животным успешно приспособиться к жизни на суше и экономно расходовать воду.

    Таким образом, в различных группах живых организмов можно наблюдать различные органы выделения, адаптирующие данные организмы к выбранной ими среде обитания. Различное строение органов выделения ведёт к появлению различий в количестве и виде выделяемых продуктов обмена веществ. Наиболее общими продуктами выделения для всех организмов являются аммиак, мочевина и мочевая кислота. Далеко не все продукты обмена выводятся из организма. Многие из них являются полезными и входят в состав клеток этого организма.

    Пути выделения продуктов обмена веществ

    В результате обмена веществ образуются более простые конечные продукты: вода, углекислый газ, мочевина, мочевая кислота и др. они, а также избыток минеральных солей удаляются из организма. Углекислый газ и некоторое количество воды в виде пара выводится через лёгкие. Основное количество воды (около 2 литров) с растворёнными в ней мочевиной, хлористым натрием и другими неорганическими солями выводится через почки и в меньшем количестве через потовые железы кожи. Функцию выделения до некоторой степени выполняет и печень. Соли тяжёлых металлов (меди, свинца), которые случайно попали с пищей в кишечник и являются сильными ядами, а также продукты гниения всасываются из кишечника в кровь и поступают в печень. Здесь они обезвреживаются — соединяются с органическими веществами, теряя при этом токсичность и способность всасываться в кровь, — и с желчью выводятся через кишечник, лёгких и кожи из организма удаляются конечные продукты диссимиляции, вредные вещества, избыток воды и неорганических веществ и поддерживается постоянство внутренней среды.

    Органы выделения

    Образующиеся в процессе обмена вещества вредные продукты распада (аммиак, мочевая кислота, мочевина и др.) должны быть удалены из организма. Это необходимое условие жизнедеятельности, поскольку накопление их вызывает самоотравление организма и гибель. В выведении ненужных организму веществ участвуют многие органы. Все нерастворимые в воде и, следовательно, не всасывающиеся в кишечнике вещества выводятся с калом. Углекислый газ, вода (частично), удаляются через лёгкие, а вода, соли, некоторые органические соединения — с потом через кожу. Однако большая часть продуктов распада выделяется в составе мочи через мочевыделительную систему. У высших позвоночных животных и у человека выделительная система состоит из двух почек с их выводными протоками — мочеточниками, мочевого пузыря и мочеиспускательного канала, по которому моча выводится наружу при сокращении мускулатуры стенок мочевого пузыря.

    Почки — главный орган выделения, так как в них происходит процесс образования мочи.

    Строение и работа почек

    Почки — парный орган бобовидной формы — расположены на внутренней поверхности задней стенки брюшной полости на уровне поясницы. К почкам подходят почечные артерии и нервы, а отходят от них мочеточники и вены. Вещество почки состоит из двух слоёв: наружный (корковый) более тёмный, и внутренний (мозговой) светлый.

    Мозговое вещество представлено многочисленными извитыми канальцами, идущими от капсул нефронов и возвращающимися в кору почек. Светлый внутренний слой состоит из собирательных трубок, образующих пирамидки, обращённые вершинами внутрь и заканчивающиеся отверстиями. По извитым почечным канальцами, густо оплетёнными капиллярами, из капсулы проходит первичная моча. Из первичной мочи в капилляры возвращается (реабсорбируется) часть воды, глюкоза. Оставшаяся более концентрированная вторичная моча поступает в пирамидки.

    Почечная лоханка имеет форму воронки, широкой стороной обращённой к пирамидкам, узкой — к воротам почки. К ней примыкают две большие чаши. По трубочкам пирамидок, через сосочки, вторичная моча просачивается сначала в малые чашечки (их 8-9 штук), затем в две большие чашечки, а из них в почечную лоханку, где собирается и проводится в мочеточник.

    Ворота почки — вогнутая сторона почки, от которой отходит мочеточник. Здесь же в почку входит почечная артерия и отсюда же выходит почечная вена. По мочеточнику вторичная моча постоянно стекает в мочевой пузырь. По почечной артерии непрерывно приносится кровь, подлежащая очистке от конечных продуктов жизнедеятельности. После прохождения через сосудистую систему почки кровь из артериальной становится венозной и выносится в почечную вену.

    Мочеточники. Парные трубки 30–35 см длиной, состоят из гладкой мускулатуры, выстланы эпителием, снаружи покрыты соединительной тканью. Соединяют почечную лоханку с мочевым пузырём.

    Мочевой пузырь. Мешок, стенки которого состоят из гладкой мускулатуры, выстланной переходным эпителием. У мочевого пузыря выделяют верхушку, тело и дно. В области дна к нему под острым углом подходят мочеточники. От дна же — шейки — начинается мочеиспускательный канал. Стенка мочевого пузыря состоит из трёх слоёв: слизистой оболочки, мышечного слоя и соединительнотканной оболочки. Слизистая оболочка выстлана переходным эпителием, способным собираться в складки и растягиваться. В области шейки мочевого пузыря имеется сфинктер (мышечный сжиматель). Функция мочевого пузыря заключается в накапливании мочи и при сокращении стенок выделять мочу наружу через (3 — 3,5 часа).

    Мочеиспускательный канал. Трубка, стенки которой состоят из гладкой мускулатуры, выстланной эпителием (многорядным и цилиндрическим). У выходного отверстия канала имеется сфинктер. Выводит мочу во внешнюю среду.

    Каждая почка состоит из огромного количества (около миллиона) сложных образований — нефронов. Нефрон — функциональная единица почки. Капсулы расположены в корковом слое почки, тогда как канальцы — преимущественно в мозговом. Капсула нефрона напоминает шар, верхняя часть которого вдавлена в нижнюю, так что между его стенками образуется щель — полость капсулы.

    От неё отходит тоненькая и длинная извитая трубочка — каналец. Стенки канальца, как и каждая из двух стенок капсулы, образованы одним слоем эпителиальных клеток.

    Почечная артерия, войдя в почку, делится на большое количество веточек. Тонкий сосуд, называющийся переносящей артерией, заходит во вдавленную часть капсулы, образуя там клубочек капилляров. Капилляры собираются в сосуд, который выходит из капсулы, — выносящую артерию. Последняя подходит к извилистому канальцу и снова распадается на капилляры, оплетающие его. Эти капилляры собираются в вены, которые, сливаясь, образуют почечную вену и выносят кровь из почки.

    Нефроны

    Структурно-функциональной единицей почки является нефрон, который состоит из капсулы клубочка, имеющей форму двустенного бокала, и канальцев. Капсула охватывает клубочковую капиллярную сеть, в результате формируется почечное (мальпигиево) тельце.

    Капсула клубочка продолжается в проксимальный извитый каналец. За ним следует петля нефрона, состоящая из нисходящей и восходящей частей. Петля нефрона переходит в дистальный извитый каналец, впадающий в собирательную трубочку. Собирательные трубочки продолжаются в сосочковые протоки. На всём протяжении канальцы нефрона окружены прилегающими к ним кровеносными капиллярами.

    Образование мочи

    Моча образуется в почках из крови, которой почки хорошо снабжаются. В основе мочеобразования лежат два процесса — фильтрация и реабсорбция.

    Фильтрация происходит в капсулах. Диаметр приносящей артерии больше, чем выносящей, поэтому давление крови в капиллярах клубочка достаточно высокое (70–80 мм рт.ст.). благодаря такому высокому давлению плазма крови вместе с растворёнными в ней неорганическими и органическими веществами проталкивается сквозь тонкую стенку капилляра и внутреннюю стенку капсулы. При этом профильтровываются все вещества с относительно малым диаметром молекул. Вещества с крупными молекулами (белки), а также форменные элементы крови остаются в крови. Таким образом, в результате фильтрации образуется первичная моча, в состав которой входят все компоненты плазмы крови (соли, аминокислоты, глюкоза и другие вещества) за исключением белков и жиров. Концентрация этих веществ в первичной моче такая же, как ив плазме крови.

    Образовавшаяся в результате фильтрации в капсулах первичная моча поступает в канальцы. По мере её прохождения по канальцам эпителиальные клетки их стенок отбирают обратно, возвращают в кровь значительное количество воды и необходимые организму вещества. Этот процесс называется реабсорбцией. В отличие от фильтрации он протекает за счёт активной деятельности клеток канальцевого эпителия с затратами энергии и поглощением кислорода. Некоторые вещества (глюкоза, аминокислоты) реабсорбируют полностью, так что во вторичной моче, которая поступает в мочевой пузырь, их нет. Другие вещества (минеральные соли) всасываются из канальцев в кровь в необходимых организму количествах, а остальное количество выводится наружу.

    Большая суммарная поверхность почечных канальцев (до 40–50 м2) и активная деятельность их клеток способствуют тому, что из 150 литров суточной первичной мочи образуется только 1,5–2,0 литра вторичной (конечной). У человека за час образуется до 7200 мл первичной мочи, а выделяется 60–120 мл вторичной. Это значит, что 98–99% её всасывается обратно. Вторичная моча отличается от первичной отсутствием сахара, аминокислот и повышенной концентрацией мочевины (почти в 70 раз).

    Непрерывно образующаяся моча по мочеточникам поступает в мочевой пузырь (резервуар мочи), из которого по мочеиспускательному каналу периодически выводится из организма.

    Регуляция деятельности почек

    Деятельность почек, как и деятельность других выделительных систем, регулируется нервной системой и железами внутренней секреции — главным образом.

    гипофизом. Прекращение работы почек неминуемо ведёт к смерти, наступающей в результате отравления организма вредными продуктами обмена веществ.

    Функции почек

    Почки являются основным органом выделения. Они выполняют в организме множество различных функций.

    Функция
    ВыделительнаяПочки удаляют из организма избыток воды, органических и неорганических веществ, продукты азотного обмена.
    Регуляция водного балансаПозволяет контролировать объём крови, лимфы и внутриклеточной жидкости за счёт изменения объёма выводимой с мочой воды.
    Регуляция постоянства осмотического давления жидкостей (осморегуляция)Происходит за счёт изменения количества выводимых осмотически активных веществ.
    Регуляция ионного состава жидкостейОбусловлена возможностью избирательного изменения интенсивности экскреции различных ионов с мочой. Влияет также и на кислотноосновное состояние путём экскреции водородных ионов.
    Образование и выделение в кровоток физиологически активных веществГормоны, витамины, ферменты.
    РегуляцияРегуляция артериального давления путём изменения объёма циркулирующей в организме крови.
    Регуляция эритропоэзаВыделяющийся гормон эритропоэтин влияет на активность деления стволовых клеток красного костного мозга, изменяя тем самым количество форменный элементов (эритроцитов, тромбоцитов, лейкоцитов) в крови.
    Образование гуморальных факторовСвёртывание крови (тромбобластина, тромбоксана), а также участие в обмене физиологического антикоагулянта гепарина.
    МетаболистическаяПринимают участие в обмене белков, липидов и углеводов.
    ЗащитнаяОбеспечивают выделение из организма различных токсичных соединений.

    Выделение у растений

    Растения, в отличие от животных, выделяют лишь небольшие количества азотистых продуктов, которые выводятся в виде аммиака путём диффузии. Водные растения выделяют продукты метаболизма путём диффузии в окружающую среду. Наземные же растения накапливают ненужные вещества (соли и органические вещества — кислоты) в листьях — и освобождаются от них при листопаде или же накапливают их в стеблях и листьях, которые осенью отмирают. За счёт изменения тургорного давления в клетках растения могут переносить даже значительные сдвиги в осмотической концентрации окружающей жидкости до тех пор, пока она остаётся ниже осмотической концентрации внутри клеток. Если же концентрация растворённых веществ в окружающей жидкости выше, чем внутри клеток, то происходит плазмолиз и гибель клеток.

    Способы выделения веществ у растений.

    ⇐ ПредыдущаяСтр 8 из 12Следующая ⇒

    У растений, так же как у животных, выделение веществ может быть пассивным и активным. Пассивное выделение продуктов обмена веществ по градиенту концентрации называется экскрецией, активное выведение веществ — секрецией. В процессах секреции обязательно участие активного транспорта веществ, на что затрачивается метаболическая энергия.

    Как и у животных, у растений различают три способа выделения веществ из клетки: мерокриновую, апокриновую и голокриновую секрецию.

    1. Мерокриновый тип секреции включает в себя две разновидности : а) эккриновую (мономолекулярную) секрецию через мембраны, осуществляемую активными переносчиками или ионными насосами; б) гранулокриновую секрецию — выделение веществ в «мембранной упаковке», т. е. в пузырьках (везикулах), секрет которых освобождается наружу при взаимодействии пузырька с плазмалеммой или поступает во внутренние компартменты клетки (в вакуоль).

    2. Апокриновая секреция осуществляется с отрывом вместе с секретом части цитоплазмы, например с отрывом головок у солевых волосков некоторых галофитов.

    3. Голокриновой называется секреция, при которой в результате активного секреторного процесса вся клетка превращается в секрет. Примером может служить секреция слизи клетками корневого чехлика.

    Процесс секреции у растений осуществляется специализированными клетками и тканями. Наряду с этим к секреции способна каждая растительная клетка, формирующая клеточную стенку. В мембранах всех клеток функционируют ионные насосы (Н+-помпа и др.) и механизмы вторичного активного транспорта.

    У растений нет единой выделительной системы, свойственной животным. Выделяемые вещества могут накапливаться внутри клетки (в вакуолях), в специальных хранилищах (например, в смоляных ходах) или выносятся на поверхность растения.

    Наиболее изученным механизмом эккриновой секреции являются ионные насосы, прежде всего Н+-помпа . Меньше известно о физиологии гранулокриновой (везикулярной) секреции. Для животных объектов установлено, что секреция с участием везикул аппарата Гольджи — сложный многоступенчатый процесс, осуществляющийся в два этапа: 1) транспорт везикул, 2) слияние их с плазмалеммой. На первом этапе секреторные пузырьки направленно перемещаются от АГ к определенным участкам клеточной мембраны с помощью микротрубочек и актиновых микрофиламентов, для чего необходим АТР. На втором этапе везикулы слипаются (адгезия) с плазмалеммой при участии специальных белков (гликопротеинов типа лектина) и Са2 + . В результате происходит кластеризация адгезивного комплекса, обнажение липидных фаз в области контакта, слияние липидных бислоев везикулы и клеточной мембраны, прорыв контакта и расширение прорыва. Все это приводит к встраиванию мембраны секреторного пузырька в клеточную мембрану и выходу секрета на наружную поверхность плазмалеммы. На втором этапе секреторного процесса клетке необходим Са2 + . Роль кальция многообразна: участие в активации актомиозинового комплекса, снижение поверхностного отрицательного заряда контактирующих мембран, Са2+-зависимое фосфорилированием бранных белков с участием кальмодулина . Молекулярный механизм везикулярной секреции в растительных клетках не изучен. Однако известно, что и здесь необходим Саг + . По-видимому, процессы секреции у растений аналогичны тому, что известно для клеток животных.

     

    Индукция поляризации у растений.

    Важнейшее условие формообразования при развитии организма — поляризация биологических структур. Под полярностью подразумевают специфическую ориентацию процессов и структур в пространстве, приводящую к появлению морфофизиологических градиентов. Полярность определяет положений осей, обусловливающих форму клеток, органов и целого организма.

    Полярность особенно наглядно представлена у растений, для которых характерна биполярная структура (главная ось: побег — корень). В физиологическом плане полярность проявляется у растений, в частности в процессах регенерации. У стеблевых и корневых черенков независимо от их положения в пространстве побеги развиваются с морфологически апикального (по отношению к верхушке стебля), а корни — с базального концов. Это объясняется тем, что ИУК, перемещаясь полярно, скапливается в морфологически нижнем конце черенка и индуцирует включение генетической программы корнеобразования.

    Однако полярность не является изначальным и неизменно существующим свойством биологических объектов. У спор хвощей и папоротников полярность возникает лишь после определенных внешних воздействий, например, в условиях односторонне падающего света. При делении такой поляризованной споры освещенная сторона и соответствующая дочерняя клетка формируют заросток, а затененная -ризоид.

    Механизм поляризации особенно подробно изучен у яйцеклетки бурой морской водоросли Fucus. До оплодотворения яйцеклетка фукуса лишена оболочки, ядро расположено в центре клетки и вначале не наблюдается сколько-нибудь заметной полярности в ее строении. После оплодотворения клетка опускается на дно, покрывается оболочкой и через некоторое время на ее нижней поверхности начинается образование ризоидного выступа. Первое деление яйцеклетки проходит в направлении, перпендикулярном образовавшейся оси. Верхняя клетка дает начало большей части таллома, нижняя — небольшой части таллома и ризоиду. По-видимому, сила гравитации в данном случае не представляет собой определяющего фактора в индуцировании полярности, так как при развитии яйцеклеток фукуса в темноте ризоиды могут расти в различных направлениях. При одностороннем освещении ризоид образуется с затененной стороны.

    Предполагается, что вследствие электрической поляризации яйцеклетки в ее плазмалемме происходит латеральное электрофоретическое перемещение липопротеиновых компонентов с положительным или отрицательным зарядом (L. F. Jaffe et al. 1977—1980). Эти компоненты (ионные каналы, насосы, ферменты и др.) затем закрепляются на полюсах клетки с помощью микрофиламентов и микротрубочек цитоскелета, что необратимо фиксирует возникшую первичную поляризацию и определяет главную ось тела растения. При последующем делении яйцеклетки (плоскость деления перпендикулярна оси поляризации) ядра в дочерних клетках попадают в совершенно разные условия, возникшие в поляризованной цитоплазме, и вследствие этого начинают поставлять неидентичную генетическую информацию. Таким образом происходит дифференциация клеток.

    Поляризация клеток у многоклеточных организмов вызывается самыми разными причинами: физико-химическими градиентами (величины осмотического давления и pH, концентрации 02, С02 и т. д.), гормональными, электрическими и трофическими градиентами, контактами с соседними клетками (контактная поляризация), механическим давлением и натяжением. Особое значение для целостности растения имеют те градиенты, которые создаются доминирующими центрами побега и корня — их верхушками. Колебательный характер этих градиентов — важное условие поддержания временной целостности растительного организма.

     

    Вопрос

    Теория «эффекта положения».

    Каждая клетка многоклеточного организма подвергается определенным воздействиям со стороны физических, химических и физиологических градиентов и влиянию соседних клеток. В результате в клетках реализуются именно те потенции (дифференцировка, функциональная активность), которые соответствуют окружающим условиям. Эта теория получила название «эффекта положения».

    Для того чтобы адекватно отвечать на изменение условий и сигналы, поступающие из окружающей среды (свойство раздражимости), каждая клетка постоянно тестирует (проверяет) свое местоположение.

    Дж. Боннер (1965) для объяснения механизмов управления дифференцировкой предложил принцип морфогенетических тестов. Апикальная клетка делится в поперечном направлении на две дочерние. Каждая из них «определяет», является ли она верхушечной. Для апикальной клетки результатом будет продолжение деления, а вторая, субапикальная, тестирует величину группы окружающих ее клеток. Если группа мала, включается подпрограмма деления, функционирующая до достижения определенного программой количества клеток в этом участке апекса. После образования необходимого числа клеток каждая из них тестирует свое положение у поверхности или в глубине клеточной популяции. Если анализ показывает, что какие-то клетки находятся на поверхности группы, включается программа их дифференцировки в клетки эпидермальные. Остальные клетки, оказавшиеся не на поверхности, проводят тест на положение в глубине группы, в результате чего у расположенных в самой глубине индуцируется подпрограмма дифференцировки в клетки ксилемы, а у находящихся менее глубоко — подпрограмма образования флоэмы. Клетки, занимающие промежуточное положение, становятся камбиальными, т. е. делятся по замкнутому циклу, формируя элементы ксилемы и флоэмы.

    У растений найдены рецепторы фитогормонов, позволяющие клеткам оценивать их состав и количество в окружающей среде. При культивировании растительных клеток в искусственной среде установлен «эффект массы». Единичная изолированная клетка редко переходит к делению. Чем гуще высеяны клетки (например, на поверхность питательного агара), тем большее их число начинает делиться. Если яйцеклетки фукуса помещены близко друг от друга, то ризоиды образуются в сторону центра группы («групповой эффект»). Это явление можно объяснить тем, что каждая яйцеклетка синтезирует и выделяет в окружающую среду ИУК, и концентрация этого фитогормона в центре группы оказывается более высокой, чем снаружи. Как уже говорилось, ауксин индуцирует у яйцеклеток фукуса образование ризоидов. Таким образом, тест на величину труппы клеток может быть опосредован концентрацией фитогормонов или других физиологически активных веществ, выделяемых клетками.

     

    Прямое окисление сахаров.

    Некоторые организмы способны окислять и нефосфорилированную глюкозу. Этот путь прямого окисления сахаров обнаружен у некоторых бактерий, грибов и животных, а также у фотосинтезирующих морских водорослей.

    Из мицелия плесневого гриба Aspergillus niger может быть выделен ферментный препарат, способный окислять глюкозу в глюконовую кислоту.

    Окисление глюкозы до глюконовой кислоты осуществляется— глюкооксидазой, содержащей в своем составе две молекулы FAD и 15% (от ее массы) углеводов.

    Фермент отнимает два атома водорода от глюкозы, находящейся в пиранозной форме, и переносит его на молекулярный кислород. Перед окислением происходит превращение (мутаротация) ос-глюкозы в ?-форму, Первичный продукт окисления — лактон глюконовой кислоты, который, гидратируясь неферментативным путем, превращается в глюконовую кислоту:

    Если в процессе дыхания прямому окислению подвергаются и другие сахара, кроме глюкозы, то образуется целое семейство кислот, названных кислотами прямого (первичного) окисления сахаров. Глюкозооксидаза способна окислять только D-глюкозу. В этом отношении она отличается от D-гексозооксидазы, способной наряду с D-глюкозой окислять и другие гексозы (мальтозу, лактозу, целлобиозу) с образованием соответствующих альдоновых кислот.

    Введенные в растительные клетки, эти кислоты используются в процессе дыхания. Из глюкуроновой и галактуроновой кислот в клетках может образоваться аскорбиновая кислота (витамин С).

     

    Вычеркнут



    Читайте также:

     

    Урок 9. выделение у растений и животных - Биология - 6 класс

    Какие типы органов выделения есть у животных?

    Выделение животных - совокупность процессов, обеспечивающих выведение из организма избытка воды, конечных продуктов обмена, солей и ядовитых веществ, попавших в организм или образовавшихся в нем.

    В процессе эволюции животного мира органы выделения появились на довольно поздних этапах. У губок и кишечнополостных специализированных органов нет, поэтому удаление из организма конечных продуктов обмена осуществляется путем диффузии через поверхность тела.

    Первые специализированные органы выделения – небольшие трубочки появляются у плоских червей. Это разветвленная трубочка, которая открывается на поверхности тела порой.

    У кольчатых червей, которые ведут водный образ жизни, функционируют более сложная система выделительных трубочек, которые одним концом открываются в полость, а противоположным концом - наружу. Органами выделения наземных беспозвоночных (паукообразных, насекомых) есть выделительные трубочки еще более сложного строения количеством от двух до нескольких сотен. Каждый сосуд открывается в кишечник на границе средней и задней кишок, а другой конец слепо замкнут и омывается лимфою.

    У позвоночных животных органами выделения являются парные почки, которые расположены в брюшной полости вблизи позвоночника. Каждая почка состоит из тысяч почечных элементов, тесно связанные кровеносными сосудами. Канальцы от этих элементов собирают мочу и направляют ее в парных мочеточников, которые ведут к мочевого пузыря. Последний открывается наружу мочеиспускательным каналом.

    Выделительная система

    Какие же существуют органы животных? Системы органов включают в себя также выделительную систему, которая отвечает за удаление из организма продуктов метаболизма, токсинов и ядов.

    - У плоских червей выделительная система представлена протонефридиями.

    - У кольчатых червей это уже метанефридии.

    - У членистоногих появляются зеленые железы, мальпигиевы сосуды.

    - У моллюсков – почка.

    - У всех последующих типов (до рыб) головные почки.

    - У рыб и амфибий туловищные почки.

    У всех, начиная с рептилий и заканчивая млекопитающими, эти функции выполняют тазовые почки.

    В состав выделительной системы большинства млекопитающих входят: почки, мочеточники, мочевой пузырь и уретра. В почках происходит процесс фильтрации крови, результатом которого является процесс образования мочи, которая содержит большое количество различных солей, мочевины и некоторых других продуктов жизнедеятельности организма. Моча поступает вниз по мочеточникам в мочевой пузырь, откуда через уретру выделяется в окружающую среду.

    Подобное строение выделительной системы млекопитающих свидетельствует о достаточно активно протекающих в их организмах обменных процессах, теплокровности и постоянстве гомеостаза.

    Как происходит выделение вредных веществ у растений?

    Через устьица и чечевички коры, например березы, из растения удаляется углекислый газ.
    Выделение сахаров у растений осуществляется специальными образованиями — нектарниками. У большинства растений они находятся в цветках, а у некоторых — на стеблях и листьях. Нектар обладает бактерицидными свойствами и защищает завязь цветка от микроорганизмов. К тому же нектар наряду с окрашенным венчиком и ароматом цветков является важным приспособлением для привлечения насекомых, осуществляющих перекрёстное опыление.
    Через специальные железы растений в атмосферу выделяются летучие вещества, в том числе эфирные масла. К эфиромасличным растениям относятся пеларгония, мята, мелисса, эвкалипт. Многие из них используются в лекарственных целях, а также для ароматизации продуктов, изготовления парфюмерной продукции.
    Опавшие листья растений содержат неорганические и органические вещества и представляют собой очень ценное удобрение. Поэтому садоводы закладывают листья в компостные кучи. Благодаря опавшим листьям почва в лесу ежегодно обогащается перегноем. Вот почему их не надо жечь. Вполне понятно, что сбор опавших листьев и вообще удаление лесной подстилки в лесу отрицательно сказываются па жизни деревьев.

    Сколько существует видов загрязнения?

    Оишимая Сен Наг, 1 октября 2020 г., Окружающая среда

    Пластиковое загрязнение угрожает будущим поколениям всех видов на планете Земля. Изображение предоставлено: Gualtiero Boffi / Shutterstock.com
    • Загрязнение может быть разных типов в зависимости от того, какая часть окружающей среды загрязняется, или от основного типа загрязнителя.
    • Загрязнение воздуха, воды и почвы - три основных типа загрязнения. У нас также есть шумовые, визуальные, световые, термические и пластиковые загрязнения. Засорение и радиоактивное загрязнение также вызывают загрязнение.
    • Загрязнение окружающей среды угрожает здоровью и будущему благополучию всех видов на Земле.
    • Загрязнение, которое не контролируется, может привести к исчезновению многих видов.

    Загрязнение означает добавление загрязняющих веществ в природную среду, приводящее к неблагоприятному воздействию на окружающую среду. Загрязнение вызвано деятельностью человека, и уровень загрязнения окружающей среды увеличился с ростом населения и развитием человеческой цивилизации.Загрязнение может быть разных типов в зависимости от того, какая часть окружающей среды подвергается загрязнению, или от типа загрязняющих веществ / загрязняющих веществ, вызывающих загрязнение. Загрязнение воздуха, воды и почвы являются основными типами загрязнения. Однако, учитывая широкий спектр способов, которыми наш вид смог загрязнить окружающую среду, у нас также есть шумовое, световое, радиоактивное, термическое и пластиковое загрязнение. Более подробно различные типы загрязнения обсуждаются ниже.

    Загрязнение воздуха -

    Загрязнение воздуха из-за дыма, выходящего из двух заводских труб в промышленной зоне Киева, Украина.Изображение предоставлено: LALS STOCK / Shutterstock.com

    Загрязнение воздуха означает выброс в атмосферу токсичных газов, биологических молекул и твердых частиц. Загрязняющие вещества могут быть получены из нескольких источников, включая природные процессы и деятельность человека. Извержения вулканов, лимнические извержения, автомобильные и промышленные сточные воды и т. Д. Являются некоторыми примерами источников загрязнения воздуха. Окись углерода, двуокись углерода, хлорфторуглероды, аэрозольные баллончики и т. Д. Являются некоторыми примерами загрязнителей воздуха.Такое загрязнение может быть очень пагубным для здоровья и благополучия всех форм жизни на Земле.

    Загрязнение воды -

    Неочищенные промышленные стоки, попадающие в воду.Изображение предоставлено: Toa55 / Shutterstock.com

    Проще говоря, загрязнение водных объектов, таких как озера, реки, пруды, водоносные горизонты и т. Д., Загрязнителями, называется загрязнением воды. Как и загрязнение воздуха, загрязнение воды является одним из самых вредных видов загрязнения. Это может иметь чрезвычайно катастрофические последствия для всех живых существ, использующих загрязненную воду. Основной объем всех загрязняющих веществ, образующихся на суше, попадает в водоемы. Токсичные отходы, выделяемые промышленными предприятиями, патогены, выбрасываемые в сточные воды, вредные химические вещества, присутствующие в сельскохозяйственных стоках и т. Д., являются одними из основных загрязнителей воды. Загрязнение воды может привести к эпидемиям и даже пандемиям, которые могут уничтожить популяцию целого вида или даже нескольких видов. Таким образом, загрязнение воды оказывает крайне неблагоприятное воздействие на окружающую среду, общество и экономику местности.

    Загрязнение почвы -

    Почва загрязнена промышленными стоками.Изображение предоставлено: Lefryandi / Shutterstock.com

    Загрязнение почвы на территории приводит к загрязнению почвы или ее деградации. Почва необходима для роста всех растений, в том числе сельскохозяйственных культур. Таким образом, ухудшение качества почвы приводит к снижению урожайности и ухудшению здоровья культур, выращиваемых на такой почве. Промышленные и сельскохозяйственные химикаты - обычные загрязнители, загрязняющие почву.

    Шумовое загрязнение -

    Шумовое загрязнение, вызванное интенсивным движением транспорта, - обычная неприятность в нашей повседневной жизни.Изображение предоставлено: Diego Cervo / Shutterstock.com

    Когда окружающая среда наполнена ненужными или неприятными звуками, вредными для животных и растений, это называется шумовым загрязнением. Транспортные средства, машины, промышленность, громкая музыка, крики людей и т. Д. Являются одними из наиболее распространенных источников шумового загрязнения. Этот тип загрязнения в долгосрочной перспективе может вызвать хронические заболевания, такие как сердечно-сосудистые заболевания. Шум также может сказаться на психологическом здоровье людей.

    Загрязнение пластиком -

    Пластмассы разбросаны вдоль побережья в районе Панамского канала.Изображение предоставлено: Fotos593 / Shutterstock.com

    Как следует из названия, загрязнение пластиком вызывается накоплением пластика в окружающей среде. Пластик, не поддающееся биологическому разложению вещество, чрезвычайно вреден для всего живого на Земле. Каждый год тысячи животных гибнут из-за загрязнения пластиком. Проглатывание пластмассы или попадание в пластмассовые предметы убивают этих животных. Большая часть пластиковых отходов, образующихся в мире, попадает в океаны, где они наносят большой вред морской экосистеме.

    Радиоактивное загрязнение -

    Экспертный сбор пробы воды для проверки радиоактивного загрязнения водного объекта.Изображение предоставлено: Адам Грегор / Shutterstock.com

    Когда радиоактивные вещества присутствуют в областях, где их присутствие нежелательно или непреднамеренно, это приводит к такому типу загрязнения, который называется радиоактивным загрязнением. Такие вещества очень токсичны для всего живого на Земле. Радиоактивные вещества вызывают мутации в генетическом материале живых организмов, что приводит к различным типам рака. Воздействие таких токсинов также может отрицательно повлиять на различные системы организма. Смерть или обезображивание являются обычными последствиями воздействия радиоактивных отходов.Безответственное обращение с такими отходами или радиоактивные бедствия - частые причины радиоактивного загрязнения.

    Световое загрязнение -

    Яркие огни на шоссе на Тайване создают световое загрязнение, влияющее на дикую природу.Изображение предоставлено: PhotonCatcher / Shutterstock.com

    Загрязнение ночной среды антропогенным светом известно как световое загрязнение. Этот тип загрязнения вызывается чрезмерным освещением улиц, прожекторами, используемыми на стадионах, светильниками, используемыми в промышленных зонах, и т. Д. Негативные эффекты светового загрязнения включают в себя ухудшение эстетической среды места, создавая беспорядки в помещении. экосистемы, а также нанести вред здоровью живых существ.

    Термическое загрязнение -

    В местный водоем сбрасывается горячая вода из промышленных предприятий.Изображение предоставлено: ToptoDown / Shutterstock.com

    Вызванное изменение температуры больших объемов воды вызывает тепловое загрязнение. Этот тип загрязнения приводит к ухудшению качества воды, поскольку теплая вода не обеспечивает идеальных условий для жизни водной флоры и фауны. Например, когда вода, используемая в качестве хладагента на электростанциях или в промышленности, попадает в естественный водоем, теплая или горячая вода смешивается с остальной водой, повышая общую температуру водной экосистемы.Более высокие температуры также изменяют состав растворенных в воде элементов. Флора и фауна, обитающие в местности, которая ранее была адаптирована к определенному температурному диапазону, могут погибнуть из-за такого резкого изменения температуры воды. Таким образом, водные организмы испытывают тепловой удар из-за теплового загрязнения.

    Визуальное загрязнение -

    Хаос соединений кабелей и проводов на столбе в Катманду, Непал, создает визуальное загрязнение.Изображение предоставлено: Владимир Жога / Shutterstock.com

    Все любят видеть чистые и зеленые насаждения и красивые пейзажи. Когда человеческая деятельность ставит уродливые препятствия на пути этого видения открытых и свободных от беспорядка ландшафтов, это называется визуальным загрязнением. Установка рекламных щитов, открытое хранение мусора, перекрещивающиеся друг с другом сети электрических проводов над улицей и т. Д. Создают визуальное загрязнение. Этот тип загрязнения вызывает отвлечение внимания, утомление глаз, разнообразие мнений и другие психологические проблемы.

    Сорить -

    Мусор на улицах Тулузы, Франция.Изображение предоставлено: Николай Качанович / Shutterstock.com

    Когда продукты жизнедеятельности человека не удаляются должным образом, это называется засорением. В данном случае отходы могут включать все, что выбрасывается людьми после использования, например бутылки, стекло, упаковочный материал, электронные отходы, металлические отходы и т. Д. Некоторые из этих загрязнителей, такие как электроника, батареи, шины и т. Д., Опасны для здоровья человека. Окружающая среда. Когда химические вещества из таких отходов выщелачиваются в почву или попадают в водоемы, они вызывают загрязнение почвы и воды.Наконец, эти химические вещества попадают в тела организмов, вызывая болезни и смерть.

    Сколько существует видов загрязнения?

    Рейтинг Тип загрязнения Определение
    1 Загрязнение воздуха Загрязнение воздуха означает выброс в атмосферу таких загрязнителей, как токсичные газы, биологические молекулы и твердые частицы.
    2 Загрязнение воды Загрязнение водных объектов, таких как озера, реки, пруды, водоносные горизонты и т. Д., Загрязнителями, называется загрязнением воды.
    3 Загрязнение почвы Загрязнение почвы на территории приводит к загрязнению почвы или деградации земель.
    4 Шумовое загрязнение Когда окружающая среда наполнена ненужными или неприятными звуками, вредными для животных и растений, это называется шумовым загрязнением.
    5 Загрязнение пластиком Загрязнение пластиком вызывается накоплением пластика в окружающей среде.
    6 Радиоактивное загрязнение Когда радиоактивные вещества присутствуют в областях, где их присутствие нежелательно или непреднамеренно, это приводит к радиоактивному загрязнению
    7 Световое загрязнение Загрязнение ночной среды антропогенными свет известен как световое загрязнение.
    8 Термическое загрязнение Вызванное изменение температуры больших объемов воды вызывает тепловое загрязнение.
    9 Визуальное загрязнение Когда человеческая деятельность устанавливает уродливые препятствия для этого видения открытых и свободных ландшафтов, это называется визуальным загрязнением.
    10 Засорение Когда отходы, производимые людьми, не удаляются должным образом, это называется засорением
    .

    Вымирание растений - План урока ESL

    1. ПОИСК СЛОВ: Посмотрите в своем словаре / компьютере, чтобы найти словосочетания, другие значения, информацию, синонимы ... для слов ...

    'завод'

  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • и «вымирание» .

  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • ________________
  • • Поделитесь своими открытиями с партнерами.

    • Задавайте вопросы, используя найденные слова.

    • Задавайте вопросы партнеру / группе.

    2.ВОПРОСЫ ПО СТАТЬЕ: Вернитесь к статье и запишите несколько вопросов, которые вы хотели бы задать классу по тексту.

    • Поделитесь своими вопросами с другими одноклассниками / группами. • Задавайте вопросы партнеру / группе.

    3. ЗАПОЛНЕНИЕ ПРОБЕЛОВ: В парах / группах сравните свои ответы на это упражнение. Проверить ответы. Обсудите слова из упражнения. Были ли они новыми, интересными, заслуживающими изучения…?

    4. СЛОВАРЬ: Обведите любые слова, которые вы не понимаете.Объединяйте неизвестные слова в группы и используйте словари, чтобы найти их значения.

    5. ТЕСТИРУЙТЕ ДРУГА: Посмотрите на слова ниже. Вместе со своим партнером попробуйте вспомнить, как они использовались в тексте:

    • раскрыто
    • штука
    • Флора
    • возраст
    • найти
    • возможно
    • после
    • будущее
    • незащищенность
    • зависит от
    • проиграть
    • акт
    .

    Транспортировка сахара в растениях: Флоэма

    Для роста растениям необходим источник энергии. В растущих растениях фотосинтаты (сахара, производимые в процессе фотосинтеза) производятся в листьях путем фотосинтеза, а затем транспортируются к участкам активного роста, где сахара необходимы для поддержки роста новых тканей. В течение вегетационного периода зрелые листья и стебли производят избыток сахара, который транспортируется в места хранения, включая измельченную ткань корней или луковиц (вид модифицированного стебля).Многие растения за зиму теряют листья и перестают фотосинтезировать. В начале вегетационного периода они полагаются на запасенный сахар, чтобы вырастить новые листья, чтобы снова начать фотосинтез.

    Места, которые производят или выпускают сахар для растущих растений, называются источниками . Сахар, производимый из источников, таких как листья, необходимо доставлять к растущим частям растения через флоэму в процессе, называемом транслокацией , или перемещением сахара. Точки доставки сахара, такие как корни, молодые побеги и развивающиеся семена, называются раковинами .Раковины включают области активного роста (апикальные и боковые меристемы, развивающиеся листья, цветы, семена и плоды) или области хранения сахара (корни, клубни и луковицы). Местами хранения могут быть источник или сток, в зависимости от стадии развития завода и сезона.

    Фотосинтаты из источника обычно перемещаются в ближайший сток через элементы ситовой трубки флоэмы. Например, самые высокие листья будут направлять сахар вверх к растущим кончикам побегов, тогда как нижние листья будут направлять сахар вниз к корням.Промежуточные листья будут отправлять продукты в обоих направлениях, в отличие от потока в ксилеме, который всегда однонаправлен (от почвы к листу в атмосферу). Обратите внимание, что жидкость в одном элементе ситовой трубки может течь только в одном направлении за раз, но жидкость в соседних элементах ситовой трубки может двигаться в разных направлениях. Направление потока также меняется по мере роста и развития растения:

    • В середине вегетационного периода активно фотосинтезирующие зрелые листья и стебли служат источниками, производя избыточные сахара, которые переносятся в раковины, где потребление сахара велико.К раковинам в период вегетации относятся области меристем активного роста, новых листьев и репродуктивных структур. В раковинах также есть места для хранения сахара, например корни, клубни или луковицы. В конце вегетационного периода у растения опадают листья, и у него больше не будет активно фотосинтезирующих тканей.
    • В начале следующего вегетационного периода растение должно возобновить рост после периода покоя (зима или сухой сезон). Поскольку у растения нет листьев, его единственным источником сахара для роста является сахар, хранящийся в корнях, клубнях или луковицах с последнего вегетационного периода.Эти места хранения теперь служат источниками, а активно развивающиеся листья - стоками. Когда листья созреют, они станут источником сахара в течение вегетационного периода.

    Обзор перемещения: перенос от источника к приемнику

    Сахар перемещается (перемещается) из источника в приемник, но как? Наиболее распространенной гипотезой, объясняющей движение сахаров во флоэме, является модель давления потока для транспорта флоэмы. Эта гипотеза объясняет несколько наблюдений:

    1. Флоэма под давлением
    2. Транслокация прекращается, если ткань флоэмы погибает
    3. Транслокация происходит одновременно в обоих направлениях (но не в одной трубке)
    4. Транслокация ингибируется соединениями, которые останавливают производство АТФ в источнике сахара

    В самом общих чертах, модель потока давления работает следующим образом: высокая концентрация сахара в источнике создает низкий потенциал растворенного вещества (Ψs), который рисует воду в флоэму из соседней ксилемы.Это создает во флоэме высокий потенциал давления (Ψp) или высокое тургорное давление. Высокое давление тургора вызывает движение сока флоэмы за счет «объемного потока» от источника к приемнику, где сахара быстро удаляются из флоэмы в приемнике. Удаление сахара увеличивает Ψs, из-за чего вода покидает флоэму и возвращается в ксилему, уменьшая p.

    Это видео содержит обзор кратких источников сахара, раковин и гипотезу потока давления:

    Транспортные пути при транслокации сахара

    Прежде чем мы углубимся в детали того, как модель давления потока работ, первый Revisit ДАВАЙТЕ некоторые из транспортных путей мы ранее обсужденных:

    1. Диффузия происходит, когда молекулы перемещаются из области с высокой концентрацией в область с низкой концентрацией.Для диффузии не требуется энергия, потому что молекулы движутся вниз по градиенту их концентрации (от областей с высокой концентрацией к низкой).
    2. Протонные насосы используют энергию АТФ для создания электрохимических градиентов с высокой концентрацией протонов на одной стороне плазматической мембраны. Этот электрохимический градиент затем можно использовать в качестве источника энергии для перемещения других молекул против их градиентов концентрации через ко-переносчики.
    3. Копранспортеры - это каналы, которые выполняют тип вторичного активного (энергозатратного) транспорта.Ко-переносчики перемещают две молекулы одновременно: одна молекула транспортируется вдоль («вниз») своего градиента концентрации, высвобождая энергию, которая используется для транспортировки другой молекулы против ее градиента концентрации.
      1. Симпортеры - это тип совместного транспортера, который транспортирует две молекулы в одном направлении; оба в клетку, или оба вне клетки.
      2. Антипортеры - это тип ко-транспортера, который транспортирует две молекулы в противоположных направлениях; один в камеру, а другой из камеры.

    Симпортеры перемещают две молекулы в одном направлении; Антипортеры перемещают две молекулы в противоположных направлениях. Изображение предоставлено Академией Хана, https://www.khanacademy.org/science/biology/membranes-and-transport/active-transport/a/active-transport Изображение изменено из OpenStax Biology. Исходное изображение предоставлено Lupask / Wikimedia Commons.

    Каждый из этих транспортных путей играет роль в модели потока давления для транспорта флоэмы.

    Подробная информация о давлении потока Модель для флоэмы транспорта

    Фотосинтаты, такие как сахароза, вырабатываются клетками мезофилла (тип клеток паренхимы) фотосинтезирующих листьев.Сахара активно транспортируются из исходных клеток в клетки-компаньоны ситовой трубки, которые связаны с элементами ситовой трубки в сосудистых пучках. Этот активный транспорт сахара в клетки-компаньоны происходит через протон-сахарозный симпортер ; клетки-компаньоны используют протонный насос с питанием от АТФ для создания электрохимического градиента вне клетки. Котранспорт протона с сахарозой позволяет сахарозе двигаться против градиента ее концентрации в клетки-компаньоны.имеет место.

    Из клеток-компаньонов сахар диффундирует в элементы ситовидных трубок флоэмы через плазмодесмы, которые связывают сопутствующие клетки с элементами ситовидных трубок. Сито-трубчатые элементы флоэмы имеют пониженное содержание цитоплазмы и соединены ситовой пластиной с порами, которые обеспечивают управляемый давлением объемный поток или перемещение сока флоэмы.

    Флоэма состоит из ячеек, называемых решетчато-трубчатыми элементами. Сок флоэмы проходит через отверстия, называемые решетчатыми трубчатыми пластинами.Соседние клетки-компаньоны выполняют метаболические функции для элементов сита-трубки и снабжают их энергией. Боковые области сита соединяют элементы ситовой трубки с сопутствующими ячейками. Изображение предоставлено: OpenStax Biology.

    Наличие высоких концентраций сахара в элементах ситовой трубки резко снижает Ψs, что вызывает перемещение воды путем осмоса из ксилемы в клетки флоэмы. Это движение воды в клетки ситовой трубки вызывает увеличение p, увеличивая как тургорное давление во флоэме, так и общий водный потенциал во флоэме у источника.Это увеличение водного потенциала приводит в движение основной поток флоэмы из источника в сток.

    Разгрузка на нижнем конце трубки флоэмы может происходить либо за счет диффузии , если концентрация сахарозы ниже в приемнике, чем во флоэме, либо за счет активного транспорта , если концентрация сахарозы выше в приемнике чем во флоэме. Если раковина является областью активного роста, такой как новый лист или репродуктивная структура, то концентрация сахарозы в приемных клетках обычно ниже, чем в элементах сита-трубки флоэмы, поскольку поглощающая сахароза быстро метаболизируется для роста.Если раковина является местом хранения, где сахар превращается в крахмал, например, корень или луковица, то концентрация сахара в раковине обычно ниже, чем в элементах ситовых трубок из флоэмы, поскольку сахароза раковины быстро превращается в крахмал для место хранения. Но если раковина - это место хранения, где сахар хранится в виде сахарозы, например, сахарная свекла или сахарный тростник, то в раковине может быть более высокая концентрация сахара, чем в решетчатых клетках флоэмы. В этой ситуации активный транспорт протон-сахарозным антипортером используется для транспортировки сахара из клеток-компаньонов в вакуоли хранения в клетках хранения.

    Как только сахар выгружается в поглотительные клетки, s увеличивается, заставляя воду диффундировать посредством осмоса из флоэмы обратно в ксилему. Это движение воды из флоэмы вызывает уменьшение Ψp, снижая тургорное давление во флоэме у стока и поддерживая направление объемного потока от источника к стоку.

    Сахароза активно транспортируется из исходных клеток в клетки-компаньоны, а затем в элементы ситовой трубки. Это снижает водный потенциал, что приводит к попаданию воды во флоэму из ксилемы.Возникающее в результате положительное давление выталкивает смесь сахарозы и воды вниз к корням, где сахароза разгружается. Транспирация заставляет воду возвращаться к листьям через сосуды ксилемы. Изображение предоставлено: OpenStax Biology

    Это видео (начало в 5:03) дает более подробное обсуждение гипотезы давления потока:

    Должно быть ясно, что движение сахаров во флоэме зависит от движения воды во флоэме. Но есть некоторые важные различия в механизмах движения жидкости в этих двух различных сосудистых тканях:

    .

    Характеристики жизни

    Биология - это изучение жизни и живых организмов. Пока люди смотрели на окружающий мир, люди изучали биологию. Даже в те дни, когда еще не было письменной истории, люди знали и передавали информацию о растениях и животных.

    Современная биология действительно началась в 17 веке. В то время Антон ван Левенгук из Голландии изобрел микроскоп, а Уильям Харви из Англии описал кровообращение.Микроскоп позволил ученым обнаружить бактерии, что привело к пониманию причин болезней, а новые знания о том, как работает человеческий организм, позволили другим найти более эффективные способы лечения болезней. Все эти новые знания необходимо было привести в порядок, и в 18 веках шведский ученый Карл Линней классифицировал все живые существа по биологическим семьям, которые мы знаем и используем сегодня.

    В середине 19-го, -го и -го века, незаметно для всех, австрийский монах Грегор Мендель создал свои законы наследования, положив начало изучению генетики, которая сегодня является такой важной частью биологии.В то же время, путешествуя по миру, Чарльз Дарвин сформулировал центральный принцип естественного отбора современной биологии как основы эволюции.

    Трудно поверить, но природа вирусов стала очевидной только во второй половине 19-го -го -го века, и первый шаг на этом пути открытий был сделан русским ботаником Дмитрием Ивановским в 1892 году.

    В 20 -м веке биологи начали понимать, как живут растения и животные, и передавать свою генетически закодированную информацию следующему поколению.С тех пор, отчасти благодаря развитию компьютерных технологий, в области биологии были достигнуты большие успехи; это область постоянно растущих знаний.

    За последние несколько сотен лет биология изменилась с сосредоточения внимания на структуре живых организмов к изучению того, как они работают или функционируют. За это время биологи многое узнали о здоровье и болезнях, о генах, контролирующих деятельность нашего тела, и о том, как люди могут управлять жизнями других организмов.Нам необходимо понимать, как наша деятельность влияет на окружающую среду, как люди могут взять на себя ответственность за свое здоровье и благополучие и как мы должны быть осторожны, чтобы установить соответствующие правила использования нашей генетической информации.

    Сегодня биологи делают фантастические открытия, которые коснутся всей нашей жизни. Эти открытия дали нам возможность формировать нашу собственную эволюцию и определять тип мира, в котором мы будем жить. Последние достижения, особенно в области генной инженерии, сильно повлияли на сельское хозяйство, медицину, ветеринарию и промышленность, и наше мировоззрение изменилось. революционизировались современными достижениями в области экологии.Никогда не было более захватывающего и важного времени для изучения биологии.

    Биология - это научное исследование жизни. Но что есть жизнь? Когда мы видим птицу на камне, может показаться очевидным, что птица живая, а камень нет, но что именно делает птицу живой, а камень нет? На протяжении всей истории мыслители во многих областях пытались дать определение жизни. Хотя они не смогли дать общепринятого определения, большинство ученых согласны с тем, что все живые существа обладают некоторыми основными характеристиками:

    ■ Живые существа состоят из организованных структур.

    ■ Живые существа размножаются.

    ■ Живые существа растут и развиваются.

    ■ Живое питание.

    ■ Живые существа дышат.

    ■ Выделения и отходы живых организмов.

    ■ Живые существа реагируют на свое окружение.

    ■ Живые существа двигаются.

    ■ Живые существа контролируют свое внутреннее состояние.

    ■ Живые существа могут развиваться.

    Неживые системы могут проявлять некоторые характеристики живых существ, но жизнь - это комбинация всех этих характеристик.

    Организация. Все вещи состоят из химикатов, но в живых существах химические вещества упакованы в высокоорганизованные структуры. Основная структура жизни - это клетка. Сами клетки содержат небольшие органеллы, которые выполняют определенные функции. Клетка может существовать сама по себе или в ассоциации с другими клетками, образуя ткани и органы. Из-за их высокоорганизованной структуры живые существа как организмы.

    Репродукция. Размножение - это способность производить других особей того же вида.Он может быть половым или бесполым. Воспроизведение включает репликацию ДНК. Это химическое вещество содержит генетическую информацию, которая определяет характеристики организма, в том числе то, как он будет расти и развиваться. Дальнейшее существование жизни зависит от воспроизводства, и это, пожалуй, самая характерная черта живых существ. Воспроизведение допускает как преемственность, так и изменение. На протяжении бесчисленных поколений это позволило видам стать хорошо приспособленными к своей среде, а жизнь постепенно эволюционировала в более сложные формы.

    Рост и развитие. Все организмы должны расти и развиваться, чтобы достичь размера и уровня сложности, необходимых для завершения их жизненного цикла. Рост - это относительно постоянное увеличение размеров организма. Это происходит за счет поглощения веществ из окружающей среды и включения их во внутреннюю структуру организма. Рост можно измерить по увеличению линейных размеров (длина, высота и т. Д.), Но лучше всего измерять его по сухому весу, так как это устраняет временные изменения, вызванные потреблением воды, которые не рассматриваются как рост.Развитие предполагает изменение формы и формы организма по мере его взросления. Обычно это сопровождается увеличением сложности.

    Кормление. Живые существа постоянно преобразуют одну форму энергии в другую, чтобы остаться в живых. Хотя во время этих преобразований энергия не разрушается, всегда образуется тепло. Тепло - это форма энергии, которую нельзя использовать для управления биологическими процессами, поэтому ее иногда считают «потраченной впустую».

    Живые существа должны периодически обновлять свои запасы энергии из окружающей среды, чтобы продолжить преобразование энергии и восполнить «потерянную энергию».Они также должны получать питательные вещества, химические вещества, из которых состоит их тело, или помогать им выполнять свои биологические процессы. Живые существа получают энергию и питательные вещества, питаясь или поедая другие организмы, или делая себе пищу из простых неорганических химикатов, используя энергию солнечного света или химических реакций.

    Дыхание. Живым существам нужна энергия, чтобы оставаться в живых и выполнять работу. Хотя пища содержит энергию, она не может быть использована напрямую.Его нужно сломать.

    Энергия, выделяющаяся при распаде, используется для производства АТФ (аденозинтрифосфата) в процессе, называемом дыханием. АТФ - это молекула, богатая энергией, и это единственное топливо, которое можно использовать непосредственно для запуска метаболических реакций в живых организмах.

    Экскреция. Энергетические преобразования, происходящие в организме, связаны с химическими реакциями. Химические реакции, происходящие в организме, называются метаболическими реакциями.

    В ходе этих реакций образуются отходы, некоторые из которых ядовиты, поэтому их необходимо каким-либо образом утилизировать.Удаление продуктов метаболизма называется экскрецией.

    Отзывчивость. Все живые существа чувствительны к определенным изменениям в окружающей их среде (стимулы) и реагируют таким образом, чтобы повысить их шансы на выживание.

    Степень реактивности зависит от сложности организма: бактерия может ограничиваться простыми реакциями, такими как движение в сторону благоприятных стимулов или уход от вредных; люди могут очень изощренно реагировать на самые разные стимулы, которые они могут воспринимать либо напрямую, либо с помощью технических устройств.

    Механизм. Ответы обычно включают некоторую форму движения. Перемещение целых организмов из одного места в другое называется передвижением. Растения и другие организмы, закрепленные в одном месте, не двигаются, но могут двигать частями своего тела. Движения живых существ отличаются от движений неживых существ, поскольку они являются активными энергозатратными процессами, возникающими внутри клеток.

    Гомеостаз. Все живые существа в некоторой степени способны управлять своими внутренними условиями, так что их клетки имеют постоянную химическую и физическую среду, в которой они могут эффективно функционировать.Регулирование и поддержание относительно постоянного набора условий в организме называется гомеостазом. Гомеостаз - это свойство всех живых систем, от отдельной клетки до целой биосферы (части Земли, содержащей жизнь).

    Evolution. Живые существа могут превращаться в новые формы жизни. Эта эволюция обычно происходит постепенно из поколения в поколение в ответ на изменения в окружающей среде.

    Факт жизни:

    Продолжительное существование жизни зависит от воспроизводства, и это, пожалуй, самая характерная черта живых существ.Воспроизведение допускает как преемственность, так и изменение. На протяжении бесчисленных поколений это позволило видам стать хорошо приспособленными к своей среде, а жизнь постепенно эволюционировала в более сложные формы.

    Чем занимаются биологи?

    Современная биология - это огромный предмет, имеющий множество разделов. Специалисты в отдельных отраслях включают:

    ● молекулярные биологи и биохимики, работающие на химическом уровне, с целью выявления того, как ДНК, белки и другие молекулы участвуют в биологических процессах;

    ● генетики, изучающие гены и их участие в наследовании и развитии;

    ● клеточные биологи, изучающие отдельные клетки или группы клеток, часто путем их культивирования вне организмов; ты исследуешь, как клетки взаимодействуют друг с другом и с окружающей их средой;

    ● физиологи, выясняющие, как работают системы органов в здоровом организме;

    ● патологоанатомы, изучающие больные и дисфункциональные органы;

    ● экологи, изучающие взаимодействие организмов с окружающей средой.Некоторые сосредотачивают свое внимание на целых организмах; другие изучают популяции, особей одного вида, живущих вместе в одном месте.

    Есть также биологи, которые специализируются на определенных группах организмов; например, бактериологи изучают бактерии, ботаники изучают растения, а зоологи изучают животных.

    Биологи работают во многих областях, включая сохранение и управление дикой природой, промышленность, здравоохранение, садоводство, сельское хозяйство, зоопарки, музеи, информатику, а также морскую и пресноводную биологию.Кроме того, многие биологи работают учителями, лекторами или исследователями.

    Часть C. Письмо студентам, изучающим биологию:

    Уважаемые студенты,

    Я пишу это письмо, чтобы поприветствовать всех вас, кто собирается начать свой первый год курса биологии здесь, в университете. Вы можете подумать, что мне еще рано просить вас подумать о том, что вы будете делать, когда уедете отсюда через три года.Однако в нашей науке, как и в любой другой, столько разных областей, что невозможно изучить их все. Первое, о чем вам нужно будет подумать, это о специализации. Это письмо предлагает вам несколько советов, над которыми вы должны подумать.

    Как вы знаете, есть четыре основных области биологии, на которых мы сосредоточимся в ближайшие годы. Биологию можно разделить на зоологию, изучающую животный мир, и ботанику, изучающую жизнь растений. Мы также будем изучать молекулярную биологию, изучение того, как работают строительные блоки живых существ, клетки.Еще одна интересная тема - генетика, то есть, как биологическая информация передается от одного поколения к другому: то есть наследование. Вы должны специализироваться, но вам также необходимо знать обо всех этих четырех областях обучения. Растения и животные не живут отдельно друг от друга; все живые существа состоят из клеток, и генетика говорит нам, как растения и животные адаптируются к окружающим условиям.

    Так что же делать после того, как курс закончится и вы закончите биологический факультет? Можете ли вы сделать карьеру в области биологии? Для тех, кто выбирает специализацию в области генетики или молекулярной биологии, есть важные возможности карьерного роста в медицине.В настоящее время ведется большое количество исследований в области генной терапии, в рамках которых биологи работают с докторами и химиками, чтобы найти новые способы лечения болезней. Другие биологи ищут способы изменить генетический состав растений, которые мы выращиваем в пищу; сделать их более способными бороться с болезнями и в то же время производить больше еды.

    Мы тоже переживаем период климатических изменений, и это влияет на образ жизни животных и растений.Наука экологии становится все более важной; биологи, специализирующиеся на зоологии, работают во многих частях света. Некоторые работают над защитой таких видов, как тигр, которым серьезно угрожает изменение климата. Другие исследуют диких животных, от мельчайших насекомых до крупнейших млекопитающих, пытаясь понять, как все они живут вместе. Ботаники изучают влияние новых видов пищевых культур на окружающую среду и то, как изменения в этой области могут повлиять на наше общее состояние здоровья.Существует даже новая область биологии под названием астробиология, которая изучает возможности жизни на других планетах, но, возможно, это что-то для более отдаленного будущего.

    В чем бы вы ни специализировались, пока есть жизнь на этой (или любой другой) планете, у биолога есть работа.

    Удачи и приятной учебы!

    Жан Ширер

    Профессор биологии.

    Часть D. Научный метод:

    Согласно определению биологии, это «научное исследование». Это отличает биологию от других способов изучения жизни. Однако не существует единого жесткого научного метода, который используют биологи: существует множество способов научного изучения жизни. Тем не менее, биологические исследования обычно включают один или несколько из следующих ключевых элементов:

    - наблюдение: проведение наблюдений и проведение измерений

    - допрос: вопросы о наблюдениях и постановка задачи

    - выдвижение гипотезы: формулирование гипотезы, утверждение, которое объясняет проблему и может быть проверено

    - прогнозирование: утверждение, что произошло бы, если бы гипотеза была верной

    - тестирование: проверка гипотезы, обычно путем проведения контролируемого эксперимента, направленного на получение данных, которые будут поддерживать или опровергать гипотезу

    - интерпретация: объективная интерпретация результатов теста и создание выводов, которые принимают, изменяют или отвергают гипотезу.

    Биолог может начать расследование, делая наблюдения или используя наблюдения, описанные другими биологами. Такие наблюдения могут быть получены непосредственно с помощью органов чувств, например, при прослушивании пения птиц, или косвенно с помощью инструментов, таких как запись песни в компьютерной системе. С другой стороны, расследование может начаться просто с того, что биолог имеет представление о том, что что-то происходит определенным образом, а затем эта идея будет проверена путем проведения наблюдений или экспериментов, чтобы убедиться, что это действительно так.Гипотеза предлагается, а затем проверяется во всех исследованиях. Одним из важных аспектов научного эксперимента является то, что его могут повторить другие ученые, работающие независимо.

    Типичная гипотеза устанавливает четкую связь между независимой или управляемой переменной и зависимой переменной. Переменные - это условия или факторы (например, свет, температура или время), которые могут меняться или могут изменяться. В эксперименте независимая или управляемая переменная - это переменная, которая систематически изменяется; зависимая переменная - это измеряемый эффект или результат.Например, при исследовании активности фермента при разных температурах температура является независимой переменной, которой манипулирует ученый; скорость реакции является зависимой переменной, которая измеряется при каждой температуре. Другие переменные, называемые контролируемыми переменными, остаются постоянными или контролируются на заданном уровне.

    По окончании эксперимента результаты следует интерпретировать как можно более объективно. Иногда они настолько ясны, что очевидно, поддерживают они гипотезу или опровергают ее.Однако часто результаты бывают разными и требуют статистического анализа, прежде чем можно будет сделать выводы. Выводы могут привести к принятию, изменению или отклонению гипотезы. Даже если результаты подтверждают гипотезу, она принимается только в предварительном порядке, потому что ее невозможно полностью доказать. Однако достаточно одного противоположного наблюдения, чтобы опровергнуть гипотезу (доказать ее неправильность или неполноту). Следовательно, гипотеза - это только лучшее из возможных объяснений в любое время. Это делает биологию очень динамичным предметом, а не просто набором фактов.

    Теория клеток

    Клетки были открыты в 1665 году английским ученым и изобретателем Робертом Гуком. Гук разработал свой собственный составной световой микроскоп для наблюдения за структурами, слишком маленькими, чтобы их можно было увидеть невооруженным глазом. Среди первых исследованных им структур был тонкий кусок пробки (внешняя поверхность коры дерева). Гук описал пробку как состоящую из сотен маленьких коробочек, придавая ей вид сот. Он назвал эти коробочки клетками.Вскоре стало ясно, что практически все живые существа состоят из клеток и что эти клетки имеют определенные общие черты.

    Теория клеток

    Представление о клетках как основных единицах жизни было воплощено в теории, называемой клеточной теорией, которая включает в себя следующие основные идеи:

    клеток образуют строительные блоки живых организмов

    клеток возникают только в результате деления существующих клеток

    ячеек содержат унаследованную информацию, которая контролирует их действия

    клетка - функционирующая единица жизни; метаболизм (химические реакции жизни) происходит в клетках

    в подходящих условиях клетки способны к независимому существованию.

    :

    .

    Английский словарь - Окружающая среда

    Окружающая среда


    Список словарных статей, связанных с окружающей средой:

    Важные вопросы окружающей среды, стихийные бедствия и другие термины по окружающей среде.

    кислотный дождь

    дождь, содержащий большое количество вредных химикатов в результате сжигания таких веществ, как уголь и масло.

    биоразлагаемый

    может разлагаться естественным образом и безвредно.

    Биоразлагаемая упаковка помогает ограничить количество вредных химических веществ, выбрасываемых в атмосферу.

    биоразнообразие

    количество и разнообразие видов растений и животных, существующих в определенной природной зоне или в мире в целом, или проблема их сохранения и защиты.

    новое Национальное биологическое обследование для защиты среды обитания и биоразнообразия видов .

    окись углерода

    Ядовитый газ, образующийся при сгорании углерода, особенно в виде автомобильного топлива.

    двуокись углерода

    газ, образующийся при сжигании углерода или при выдохе людей или животных.

    климат

    общие погодные условия, обычно встречающиеся в определенном месте.

    Средиземноморский климат благоприятен для выращивания цитрусовых и винограда.

    Изменение климата

    , обеспокоенность по поводу изменения климата растет.

    вырубка

    вырубка деревьев на большой площади; уничтожение лесов людьми.

    Вырубка лесов уничтожает большие площади тропических лесов.

    опустынивание

    процесс превращения земли в пустыню.

    одноразовые изделия

    Номер

    описывает предмет, который следует выбросить после использования.

    подгузники одноразовые

    засуха

    - длительный период, когда мало или совсем нет дождя.

    В этом году (а) сильная засуха погубила урожай .

    землетрясение

    внезапное резкое движение поверхности Земли, иногда причиняющее большой ущерб.

    исчезающие виды

    находящихся под угрозой исчезновения птиц / растений / видов животных или растений, которые вскоре могут не существовать, потому что в настоящее время их очень мало.

    энергия

    энергия от чего-то вроде электричества или масла, которое может работать, например, обеспечивать свет и тепло. Есть разные виды энергии: солнечная, атомная, гидроэлектрическая...

    Энергия, вырабатываемая ветряной мельницей, приводит в действие все дренажные насосы.

    энергосбережение

    процесс сохранения энергии

    Окружающая среда

    воздух, вода и земля, в которых или на которых живут люди, животные и растения.

    Некоторые химические вещества были запрещены из-за их вредного воздействия на окружающую среду.

    исчезновение

    Многие виды растений и животных находятся под угрозой исчезновения / находятся под угрозой исчезновения (= уничтожаются, так что они больше не существуют)

    паводок

    большое количество воды, покрывающее обычно сухую область.

    дым

    сильный, неприятный, а иногда и опасный газ или дым.

    От паров бензина мне всегда становится плохо.

    природные ресурсы

    вещей, таких как полезные ископаемые, леса, уголь и т. Д., Которые существуют на месте и могут быть использованы людьми.

    Некоторые природные ресурсы, такие как природный газ и ископаемое топливо, невозможно заменить.

    глобальное потепление

    постепенное повышение мировых температур, вызванное загрязняющими газами, такими как углекислый газ, которые собираются в воздухе вокруг Земли и предотвращают утечку тепла в космос.

    парниковый эффект

    - увеличение количества углекислого газа и других газов в атмосфере, которое, как полагают, является причиной постепенного потепления поверхности Земли.

    зеленый мир

    организация, которая борется за защиту окружающей среды.

    возобновляемая энергия

    описывает форму энергии, которую можно производить так же быстро, как и использовать.

    возобновляемые источники энергии, такие как энергия ветра и волн

    пятно

    слой нефти, который плавает над большой площадью поверхности моря, обычно потому, что авария вызвала его утечку с корабля или контейнера.

    озоновый слой

    слой воздуха высоко над Землей, который содержит много озона и не позволяет вредному ультрафиолетовому излучению Солнца достигать Земли.

    Ученые считают, что в озоновом слое есть дыра.

    Загрязнение

    ущерб воде, воздуху .... вредными веществами или отходами.

    переработка отходов

    для сбора и обработки мусора с целью получения полезных материалов, которые можно снова использовать.

    Устойчивое развитие

    - разработка, которая наносит небольшой или нулевой ущерб окружающей среде и, следовательно, может продолжаться в течение длительного времени.

    Большое международное собрание было проведено с целью содействия устойчивому развитию во всех странах.

    цунами

    чрезвычайно большая волна, вызванная движением земли под морем, часто вызываемая землетрясением (= когда Земля сотрясается)

    Бензин неэтилированный

    описывает тип бензина или другого вещества, не содержащего свинец.

    использование природных ресурсов

    Деградация природных ресурсов из-за давления человека

    вулкан

    гора с большим круглым отверстием наверху, через которое лава (= горячая жидкая порода), газы, пар и пыль вытесняются или были вытеснены.

    Извергающиеся вулканы выпускают массивные выбросы

    .

    Упражнение A.

    Характеристики жизни

    Основные цели:

    К концу этого текста вы сможете:

    обсуждают основные характеристики живых существ;

    обсуждают этапы развития науки биологии.

    Предварительное чтение

    Вместе с партнером попытайтесь сопоставить определение с правильным словом.Угадайте, если вы не уверены! Затем быстро отсканируйте текст, чтобы убедиться, что вы правы.

    Упражнение A.

    1. особенность А. вещество в целом, из которого состоит все в мире
    2. материя Б. бесполезный материал или вещество
    3. тепло С. естественный мир, в котором живут люди и животные
    4. химический Д. мельчайшая единица живого вещества
    5. ячейка E. внешняя форма или контур
    6. окружающая среда Ф. форма энергии
    7. форма г. вещество, используемое в химии
    8. отходы H. что-то важное или типичное для места или предмета

    Прочтите данный текст и сделайте необходимые задания:

    Биология - это изучение жизни и живых организмов.Пока люди смотрели на окружающий мир, люди изучали биологию. Даже в те дни, когда еще не было письменной истории, люди знали и передавали информацию о растениях и животных.

    Современная биология действительно началась в 17, -м, -м веке. В то время Антон ван Левенгук из Голландии изобрел микроскоп, а Уильям Харви из Англии описал кровообращение. Микроскоп позволил ученым обнаружить бактерии, что привело к пониманию причин болезней, а новые знания о том, как работает человеческий организм, позволили другим найти более эффективные способы лечения болезней.Все эти новые знания необходимо было привести в порядок, и в 18, и годах шведский ученый Карл Линней классифицировал все живые существа по биологическим семействам, которые мы знаем и используем сегодня.

    В середине -го века, незаметно для всех, австрийский монах Грегор Мендель создал свои законы наследования, положив начало изучению генетики, которая сегодня является столь важной частью биологии. В то же время, путешествуя по миру, Чарльз Дарвин сформулировал центральный принцип естественного отбора современной биологии как основы эволюции.

    Трудно поверить, но природа вирусов стала очевидной только во второй половине 19 -го века, и первый шаг на этом пути открытий сделал русский ботаник Дмитрий Ивановский в 1892 году.

    В 20 -х годах века биологи начали понимать, как живут растения и животные, и передавать свою генетически закодированную информацию следующему поколению. С тех пор, отчасти благодаря развитию компьютерных технологий, в области биологии были достигнуты большие успехи; это область постоянно растущих знаний.

    За последние несколько сотен лет биология изменилась с сосредоточения внимания на структуре живых организмов к изучению того, как они работают или функционируют. За это время биологи многое узнали о здоровье и болезнях, о генах, контролирующих деятельность нашего тела, и о том, как люди могут управлять жизнями других организмов. Нам необходимо понимать, как наша деятельность влияет на окружающую среду, как люди могут взять на себя ответственность за свое здоровье и благополучие и как мы должны быть осторожны, чтобы установить соответствующие правила использования нашей генетической информации.

    Сегодня биологи делают фантастические открытия, которые коснутся всей нашей жизни. Эти открытия дали нам возможность формировать нашу собственную эволюцию и определять тип мира, в котором мы будем жить. Последние достижения, особенно в области генной инженерии, сильно повлияли на сельское хозяйство, медицину, ветеринарию и промышленность, и наше мировоззрение изменилось. революционизировались современными достижениями в области экологии. Никогда не было более захватывающего и важного времени для изучения биологии.

    Биология - это научное исследование жизни. Но что есть жизнь? Когда мы видим птицу на камне, может показаться очевидным, что птица живая, а камень нет, но что именно делает птицу живой, а камень нет? На протяжении всей истории мыслители во многих областях пытались дать определение жизни. Хотя они не смогли дать общепринятого определения, большинство ученых согласны с тем, что все живые существа обладают некоторыми основными характеристиками:

    ■ Живые существа состоят из организованных структур.

    ■ Живые существа размножаются.

    ■ Живые существа растут и развиваются.

    ■ Живое питание.

    ■ Живые существа дышат.

    ■ Выделения и отходы живых организмов.

    ■ Живые существа реагируют на свое окружение.

    ■ Живые существа двигаются.

    ■ Живые существа контролируют свое внутреннее состояние.

    ■ Живые существа могут развиваться.

    Неживые системы могут проявлять некоторые характеристики живых существ, но жизнь - это комбинация всех этих характеристик.

    Организация. Все вещи состоят из химикатов, но в живых существах химические вещества упакованы в высокоорганизованные структуры. Основная структура жизни - это клетка. Сами клетки содержат небольшие органеллы, которые выполняют определенные функции. Клетка может существовать сама по себе или в ассоциации с другими клетками, образуя ткани и органы. Из-за их высокоорганизованной структуры живые существа как организмы.

    Репродукция. Размножение - это способность производить других особей того же вида.Он может быть половым или бесполым. Воспроизведение включает репликацию ДНК. Это химическое вещество содержит генетическую информацию, которая определяет характеристики организма, в том числе то, как он будет расти и развиваться. Дальнейшее существование жизни зависит от воспроизводства, и это, пожалуй, самая характерная черта живых существ. Воспроизведение допускает как преемственность, так и изменение. На протяжении бесчисленных поколений это позволило видам стать хорошо приспособленными к своей среде, а жизнь постепенно эволюционировала в более сложные формы.

    Рост и развитие. Все организмы должны расти и развиваться, чтобы достичь размера и уровня сложности, необходимых для завершения их жизненного цикла. Рост - это относительно постоянное увеличение размеров организма. Это происходит за счет поглощения веществ из окружающей среды и включения их во внутреннюю структуру организма. Рост можно измерить по увеличению линейных размеров (длина, высота и т. Д.), Но лучше всего измерять его по сухому весу, так как это устраняет временные изменения, вызванные потреблением воды, которые не рассматриваются как рост.Развитие предполагает изменение формы и формы организма по мере его взросления. Обычно это сопровождается увеличением сложности.

    Кормление. Живые существа постоянно преобразуют одну форму энергии в другую, чтобы остаться в живых. Хотя во время этих преобразований энергия не разрушается, всегда образуется тепло. Тепло - это форма энергии, которую нельзя использовать для управления биологическими процессами, поэтому ее иногда считают «потраченной впустую».

    Живые существа должны периодически обновлять свои запасы энергии из окружающей среды, чтобы продолжить преобразование энергии и восполнить «потерянную энергию».Они также должны получать питательные вещества, химические вещества, из которых состоит их тело, или помогать им выполнять свои биологические процессы. Живые существа получают энергию и питательные вещества, питаясь или поедая другие организмы, или делая себе пищу из простых неорганических химикатов, используя энергию солнечного света или химических реакций.

    Дыхание. Живым существам нужна энергия, чтобы оставаться в живых и выполнять работу. Хотя пища содержит энергию, она не может быть использована напрямую.Его нужно сломать.

    Энергия, выделяющаяся при распаде, используется для производства АТФ (аденозинтрифосфата) в процессе, называемом дыханием. АТФ - это молекула, богатая энергией, и это единственное топливо, которое можно использовать непосредственно для запуска метаболических реакций в живых организмах.

    Экскреция. Энергетические преобразования, происходящие в организме, связаны с химическими реакциями. Химические реакции, происходящие в организме, называются метаболическими реакциями.

    В ходе этих реакций образуются отходы, некоторые из которых ядовиты, поэтому их необходимо каким-либо образом утилизировать.Удаление продуктов метаболизма называется экскрецией.

    Отзывчивость. Все живые существа чувствительны к определенным изменениям в окружающей их среде (стимулы) и реагируют таким образом, чтобы повысить их шансы на выживание.

    Степень реактивности зависит от сложности организма: бактерия может ограничиваться простыми реакциями, такими как движение в сторону благоприятных стимулов или уход от вредных; люди могут очень изощренно реагировать на самые разные стимулы, которые они могут воспринимать либо напрямую, либо с помощью технических устройств.

    Механизм. Ответы обычно включают некоторую форму движения. Перемещение целых организмов из одного места в другое называется передвижением. Растения и другие организмы, закрепленные в одном месте, не двигаются, но могут двигать частями своего тела. Движения живых существ отличаются от движений неживых существ, поскольку они являются активными энергозатратными процессами, возникающими внутри клеток.

    Гомеостаз. Все живые существа в некоторой степени способны контролировать свои внутренние условия, так что их клетки имеют постоянную химическую и физическую среду, в которой они могут эффективно функционировать.Регулирование и поддержание относительно постоянного набора условий в организме называется гомеостазом. Гомеостаз - это свойство всех живых систем, от отдельной клетки до целой биосферы (части Земли, содержащей жизнь).

    Evolution. Живые существа способны превращаться в новые формы жизни. Эта эволюция обычно происходит постепенно из поколения в поколение в ответ на изменения в окружающей среде.

    :

    .

    Смотрите также

© 2020 nya-shka.ru Дорогие читатели уважайте наш труд, не воруйте контент. Ведь мы стараемся для вас!