• Предложите способ выделения глины из ее смеси с водой


    Чистые вещества и смеси - параграф 4 ГДЗ химия 8 Рудзитис

    1. При чтении текста о разделении смесей в тетради составьте схему «Основные способы разделения однородных и неоднородных смесей». Для каждого способа приведите примеры.

    Разделение однородных (гомогенных) смесей
    Выпаривание Кристаллизация Дистилляция
    Выпаривание соли из раствора. Осаждние соли, кристаллизация сахара. Перегонка воды, спирта.
    Разделение неоднородных (гетерогенных) смесей
    Отстаивание Фильтрование Действие магнитом
    Нефть, бензин, масло / вода. Песок и глина. Песок и соль. Порошки железа и серы..

    2. Даны смеси: а) спирта и воды; б) речного песка и сахара; в) медных и железных опилок; г) воды и бензина. Как разделить эти смеси? Поясните, на каких свойствах компонентов смеси основано их разделение.

    Чтобы ответить на этот вопрос, нужно мысленно сравнить вещества друг с другом, и найти некое уникальное свойство одного из компонентов, которое позволит разделить смесь.

    а) Спирт и вода разделяются перегонкой. Температура кипения спирта 78,4 градуса Цельсия, а воды 100 градусов.

    б) Речной песок не растворим в воде, а сахар — хорошо растворим. Песок из раствора убираем фильтрованием.

    в) Медь не обладает магнитными свойствами, поэтому используем магнит.

    г) Бензин плохо растворим в воде поэтому применяют отстаивание.

    3. Можно ли фильтрованием выделить из раствора поваренную соль? Почему?

    Таким способом ее не выделить, именно потому, что это раствор — гомогенная (однородная) смесь.

    НО! Если мы получили насыщенный раствор соли при нагревании, то дальнейшее его охлаждение приведет к кристаллизации соли, которую можно будет отфильтровать.

    4. Предложите способ выделения глины из ее смеси с водой.

    Смесь глины с водой гетерогенная. Глина в воде не растворима. Поэтому сначала применяем отстаивание до осаждения глины, а затем — фильтрование. Впрочем, фильтрование можно использовать и сразу.

    5. Как, не используя каких-либо приспособлений, можно отделить сливки от молока? Найдите в Интернете определение термина «центрифугирование»

    Отделить сливки можно отстаиванием.

    Поясняю: сливки — это жиры из молока. Жиры в воде не растворимы, поэтому оказываются вне раствора (на поверхности).

    Центрифугирование — разделение неоднородных систем (напр., жидкость — твердые частицы) на фракции по плотности при помощи центробежных сил. Центрифугирование осуществляется в аппаратах, называемых центрифугами.

    Тестовые задания

    1. Выберите схемы, изображающие состав чистых веществ:

    На рисунке под номером 2 мы видим разнородные молекулы, поэтому ответ: 1 и 3.

    2. Фильтрованием можно разделить смесь:
    1. воды и сахара;
    2. воды и поваренной соли
    3. воды и угольной пыли
    4. воды и столового уксуса.

    Что такое фильтрование? Отделение твердых, нерастворимых частиц от раствора. Какое вещество, из списка выше, нерастворимо в воде?

    Ответ: 3. воды и угольной выли.

    3. Смесь порошков железа и серы является:
    1) гомогенной;
    2) гетерогенной.

    Смесь чего? Смесь порошков. Казалось бы она должна быть гомогенной, ведь вещества находятся в одинаковом агрегатном состоянии. НО! По определению, гомогенной, называется смесь, в которой частицы вещества невозможно отличить даже под микроскопом. В данном случае, разницу между железом (темно-серое) и серой (светло-желтая) видно даже невооруженным глазом.

    Ответ: 2) гетерогенной.

    4. Очистить воду от подсолнечного масла можно:
    1) выпариванием;
    2) фильтрованием;
    3) перегонкой;
    4) отстаиванием.

    Если хорошенько помучиться, то можно использовать любой из перечисленных. Но самый простой — 4) отстаивание.

    5. Установите соответствие между смесью и способом ее разделения:

    1) раствор поваренной соли в воде А. действие магнитом
    2) раствор мела в воде Б. с помощью делительной воронки
    3) смесь железа и серы В. выпаривание
    4) смесь воды и бензина Г. фильтрование

    Мел в воде нерастворим. Остальные указанные смеси, и способы их разделения, были описаны в параграфе, так что в подробности вдаваться не буду.

    1) В
    2) Г
    3) А
    4) Б

    Важность глины в геотехнической инженерии

    1. Введение

    Геотехническая инженерия - это обширная дисциплина, состоящая из механики грунтов и строительства фундаментов. Геотехническая инженерия также называется геотехнической инженерией или геомеханикой. Геотехническая инженерия рассматривает применение инженерной механики к проблемам грунтов и горных пород. Свойства, поведение и эксплуатационные качества грунтов рассматриваются инженерной механикой. В дальнейшем полученные данные обрабатываются и интерпретируются [1].Инженеры-геотехники учитывают оползни и землетрясения при планировании и проектировании сооружений для зданий, дорог, насыпей и свалок. Инженеры-геотехники также изучают миллиарды лет геологической истории через почвы. Поэтому исследования неоднородности почв требуют решения сложных задач. Все типы инженерных сооружений, такие как жилые дома, служебные здания, мосты, плотины, дороги и аэропорты, расположены на земле или в земле. Как сказал Ричард в 1995 году, «поддерживается почти каждым строительным грунтом или камнями.Без опоры либо летают, либо плавают, либо падают »[2]. Даже если они хорошо спроектированы, безопасность инженерного сооружения не может быть обеспечена при недостаточной несущей способности, высоком потенциале набухания / усадки и оседании (сжатии) грунта. По этой причине геотехнические работы в почвах стали обязательными. Многие исследования проводились в 1910-х годах из-за большого количества оползней и доков, произошедших в Швеции. Рекомендации, полученные в результате этих исследований, теперь применяются в качестве метода анализа оползней, известного как метод шведских срезов.В 1979 г. Скемптон представил расчеты, связанные с увеличением числа сносов стен [2]. Сегодня новейшие технологии, используемые в геотехнической обработке почвы, являются проблематичными для транспортировки энергии в связи с ростом индустриализации и различных видов строительства.

    Если посмотреть на историю инженерной геологии, то Турция - важное место. Карл фон Терзаги, основатель геотехнической инженерии или основоположник механики грунтов, исследовал галичскую глину в Турции и заложил основы геотехнической науки.В своих исследованиях богатой глиной земли, которой сегодня много, Терзаги удалось получить образцы глины с побережья Черного моря (Килиос) с помощью двух храбрых студентов, которые пережили множество трудностей, в том числе бандитов, и находясь в 20 км от моря. ближайшая автострада. Глины в исследовании Терзаги в 1925 году пронумерованы II и IV в книге, озаглавленной «Erdbau Mechanic». Эта книга считается основополагающим документом современной механики грунтов. Математическая формулировка консолидации глины под постоянным давлением с течением времени была исследована в этой книге, и было обнаружено, что может быть аналогия между теплопроводностью и демпфированием дополнительного давления воды в пустотах.Таким образом, «проблема консолидации глины» решена во всех ее аспектах. В 1925 году результаты исследований Терзаги в Турции были опубликованы в книге «Основы физики почвы и механики грунтов» издательства Franz Deutick в Вене. Эта книга признана Всемирным обществом инженеров-строителей основополагающим документом для современного наземного строительства [3].

    Первое здание, которое приходит на ум в связи с проблемами почвы, - это Пизанская башня. Его строительство началось в 1173 году и длилось около 200 лет с перерывами.Башня начала наклоняться во время строительства, и наклон продолжился после завершения строительства. В 1982 г. холм был 58,4 м в длину и отклонился от отвеса на 5,6 м (рис. 1). Данная почвенная проблема объясняется оседанием глинистого грунта на высоте до 11 м от поверхности [2]. Почвы, представляющие интерес для геотехнической инженерии, образуются в результате разрушения горных пород. Этот процесс состоит из физического и химического выветривания. Глина в основном состоит из химически измененных и различных материалов коренных пород.Изменение состава и структуры из-за физических, химических и биологических процессов, происходящих в горных породах, называется выветриванием. Физическое выветривание - это механическое разрушение горных пород в результате теплообмена и воздействия ледников, волн и ветра. Биологическое выветривание является результатом деятельности растений и животных в скале. Химическое выветривание вызывается эффектами окисления, восстановления, гидролиза, карбонизации и органических кислот в горных породах. В результате выветривания образуются всевозможные почвы.При физическом выветривании образуются блоки из горных пород, гравия, песка и ила, тогда как глинистые минералы образуются в результате химического выветривания [4]. В геотехнической практике глина обычно рассматривается как проблемный грунт. Когда эти почвы видны во время строительства дорожных дамб, стен из жидкого навоза, аэропортов и свалок отходов, это становится еще более важным. Глины обычно имеют низкую прочность, высокую сжимаемость и большие изменения объема. Из-за высокой пластичности, проницаемости, несущей способности и осадки глины, это материал, который изучался и все еще изучается в геотехнической инженерии.В этом исследовании обсуждаются характеристики глины и отмечается ее важность в инженерно-геологической практике. Эта глава состоит из пяти основных разделов. В первом разделе представлена ​​важность глины в инженерно-геологической инженерии. В разделе 2 дается определение глины и обсуждаются ее свойства. В разделе 3 представлено использование глины в инженерно-геологической практике. В Разделе 4 резюмируются предыдущие связанные исследования. Наконец, в разделе 5 кратко излагается тема глины и приводятся выводы из этой главы.

    Рисунок 1.

    Пизанская башня [2].

    2. Определение и свойства глины

    2.1. Определение глины

    Глинистые минералы называются вторичными силикатами, потому что они образуются в результате выветривания первичных породообразующих минералов. Глинистые минералы встречаются с мелкими частицами (<0,002 мм), очень мелкозернистыми и чешуйчатыми; они отделены от песка, гравия и ила из-за отрицательной электрической нагрузки на краях кристаллов и положительной электрической нагрузки на грани.Глинистые минералы состоят из двух основных структур. Во-первых, кислород кремнезема образуется за счет связывания ионов кремния с атомами кислорода со всех четырех сторон (тетраэдр). Во-вторых, образуется восьмиугольник с ионами алюминия и магния, координированными с восьми сторон с ионами кислорода и гидроксила (октаэдр). Все глинистые минералы состоят из октаэдрических и тетраэдрических листов с определенными типами катионов, которые находятся в различных формах и связаны друг с другом в определенной системе. Изменения в структуре октаэдрических и тетраэдрических пластин приводят к образованию различных глинистых минералов [4].Более распространенные группы глинистых минералов включают каолинит, иллит и смектит (монтмориллонит). Каолинит состоит из пластин кремнезема и оксида алюминия, и эти пластины очень прочно связаны, потому что каолиновая глина очень устойчива (рис. 2а). Иллит имеет слои, состоящие из двух пластин кремнезема и одной пластины оксида алюминия (рис. 2b). Однако иллит содержит ионы калия между каждым слоем; эта характеристика делает структуру глины более прочной, чем смектит. Смектит имеет слои, состоящие из двух пластин кремнезема и одной пластины оксида алюминия.Поскольку существует очень слабая связь между слоями, большое количество воды может легко проникнуть в структуру (рис. 2c). Это событие вызывает набухание такой глины [5].

    Рисунок 2.

    Отображение структуры обыкновенных глинистых минералов.

    2.2. Свойства глины

    Некоторые особенности глины влияют на структуру почвы, которая определяет ее свойства, такие как прочность, гидравлическая проводимость, оседание и набухание. Эти особенности включают изоморфное замещение и способность поверхностного анионного и катионного обмена.Это событие называется изоморфным замещением, если октаэдрические или тетраэдрические узлы заменяются другим атомом, обычно встречающимся в другом месте. Удельная поверхность - это свойство твердых тел, которое определяется как общая площадь поверхности материала на единицу массы. При отделении гидроксильных ионов от поверхности глины, что приводит к дефициту кристаллов в головке кристалла, анионы впоследствии прикрепляются к поверхности, и содержание органических молекул вызывает дисбаланс электрической нагрузки. Этот дисбаланс приводит к чрезвычайному сродству глины к воде и катионам в окружающей среде (рис. 3).Вода - это диполярная молекула, а именно, она имеет один положительный и один отрицательный заряд. Поверхность глиняного кристалла электростатически удерживается на молекуле воды. Кроме того, вода удерживается в кристалле глины за счет водородных связей. Кроме того, отрицательно заряженные глиняные поверхности притягивают катионы в воде. Катионо-анионные изменения в глинистых минералах различаются между глинистыми минералами. Следовательно, ожидается, что глина, которая привлекает больше молекул воды к поверхности, будет иметь большую пластичность, большее набухание / усадку и большее изменение объема в зависимости от нагрузки на нее.Таким образом, вода влияет на глинистые минералы. Например, содержание воды изменяет пределы консистенции, что влияет на пластичность грунта. В конечном итоге изменение пластичности глины напрямую влияет на механическое поведение почвы. Исследования обычно принимают глины как полностью насыщенные в геотехнической инженерии. Следовательно, на поведение глин влияет расположение отдельных частиц глины и содержание воды в порах. Поверхности глин заряжены отрицательно, поэтому они имеют тенденцию адсорбировать положительно заряженные катионы в поровой воде.Таким образом, катионы на поверхности частицы глины, попадающие в воду, распространяются в жидкость. Это покрытие называется двойным слоем. Вкратце, катионы распределяются вокруг отрицательно заряженной поверхности частиц глины с наибольшей плотностью у поверхности и меньшей плотностью с увеличением расстояния от поверхности. Катионы образуют положительно заряженный слой, а двойной слой создается с отрицательно заряженной поверхностью частиц глины. Двойной слой влияет на расположение частиц глины, а значит, и на физические и механические свойства почвы [6].Взаимодействие этих сил в значительной степени определяет инженерное поведение грунтов. В то же время это взаимодействие приводит к образованию различных составов и поселений в почвенных плоскостях, которые определяются как структуры в глинистых грунтах [4]. Температура окружающей среды, осадки, уровень грунтовых вод, pH и соленость - все это играет роль в свойствах глины, а также в преобразовании породы в глину. Глина, полученная из одной и той же породы, может быть разной в разных условиях окружающей среды.

    Рис. 3.

    Отображение частиц глины и заряда поверхности.

    2.3. Структура глины и физико-химические свойства

    Вокруг глины, покрытой жидкостью, имеются изменяющиеся на расстояние двухтактные кривые. Если есть сила, поднимающая два глинистых минерала, частицы слипаются. Это называется флокуляцией. Если результирующая сила является осевой, частицы отделяются друг от друга; это называется дисперсией. Ориентация частиц почвы варьируется от флокулированной до дисперсной (рис. 4).Силы между частицами важны для глины, потому что поведение глины зависит от геологической истории и структуры. Эта разница в ориентации мелкозернистых грунтов влияет на инженерное поведение грунта. Геологический процесс образования почв в природе определяет их расположение. По этой причине инженерно-геологические исследования интересуются физическим и механическим поведением грунтовых конструкций, а также прочностью между структурой, структурой и характеристиками грунтов.Существует множество исследований влияния ориентации почвы на свойства почвы, такие как прочность, гидравлическая проводимость и набухание-усадка по отношению к каждой частице [7–12]. Ingles [7] исследовал ткань почвы во время уплотнения. За счет увеличения степени ориентации частиц общий объем пустот уменьшился.

    Рис. 4.

    Ориентация частиц глины.

    Флокуляция увеличивается в зависимости от концентрации электролита, валентности ионов, температуры, уменьшения диэлектрической проницаемости, диаметра гидратированных ионов, значения pH и количества ионов, поглощенных поверхностью.Инженерные свойства почвы зависят от размера, формы, большой площади поверхности и отрицательного поверхностного заряда частиц глины. В 1925 году Терзаги предложил идею расположения глины. Он сказал, что глинистые минералы прилипают друг к другу в точках соприкосновения с силами, достаточно сильными, чтобы образовать сотовую структуру. В 1932 году Касагранде показал, что эта сотовая форма представляет собой особую структуру в глинистых почвах, и эта структура может варьироваться в зависимости от многих характеристик окружающей среды [4].На рис. 5 показано дальнейшее сжатие по мере отстаивания почвы. Позже другие исследователи также предложили тканевые модели [13–17].

    Рис. 5.

    Модель ткани Касагранде (1932 г.) [4].

    Коллинз и МакГаун [17] определили расположение элементарных частиц, сборки частиц и поровые пространства в модели ткани. Исследователи представили расположение элементарных частиц, состоящее из одной глины, ила или песка, которое показано на рис. 6a и b; групповой эффект глиняных плит показан на рисунке 6c, а взаимодействие между илом и песком показано на рисунке 6d.Сборки частиц содержат одно или несколько наборов элементарных частиц или небольших кластеров частиц. Поровое пространство определяется расстоянием между компоновками элементарных частиц и сборками частиц. Беннет и Хулберт [18] предположили, что ткань почв в основном определяется физическим расположением частиц, которое достигается во время отложения отложений физико-химическими условиями среды отложения. Ткани почв описывают кластеры, кластеры образуются другими кластерами, а пространство между кластерами, а структура почв описывает ткань, содержание минералов и силы дезактивации.Кроме того, ткани почв иногда можно увидеть под микроскопом. Структуру почв можно более подробно изучить с помощью рентгеновского дифрактометра (XRD) и растрового электронного микроскопа (SEM).

    Рисунок 6.

    Расположение частиц глины [11]. а) расположение элементарных частиц глины; (б) расположение элементарных частиц песка и ила; в) глинистые комплексы; (d) расположение ила и песка, покрытых глиной; (e) не полностью определенная договоренность.

    3. Роль глины в инженерно-геологической инженерии

    В исследованиях поведения почвы, которые не учитывают физико-химические и микроструктурные свойства глинистых почв, может отсутствовать важная информация о физических и механических свойствах почвы.Это связано с тем, что большинство физических и механических свойств можно объяснить физико-химическими и микроструктурными свойствами почвы. В общем, глина - нежелательный материал, потому что она создает серьезные инженерные проблемы. В отличие от других минералов того же размера, глина при смешивании с водой образует грязь. Глина пластична, ее можно формовать в тесто, а при приготовлении она превращается в твердое вещество с большим увеличением прочности. Глина обычно увеличивает объем во влажном состоянии, а после высыхания ее объем уменьшается, что приводит к появлению множества трещин.

    3.1. Физико-механическое поведение глины

    В геотехнической инженерии важно определить тип глины, так как этот тип напрямую влияет на важные свойства глины, такие как пределы Аттерберга, гидравлическую проводимость, набухание-усадку, осадку (сжатие) и сдвиг. сопротивление. Пределы Аттерберга, известные как пределы консистенции, определяют взаимосвязь между частицами почвы и водой и состоянием почвы относительно изменяющегося содержания воды. С повышением содержания влаги глина переходит из твердого состояния в полутвердое, в пластичное и в жидкое состояние, как показано на рисунке 7.На Рисунке 7 смесь глины и воды показывает общее уменьшение объема, которое эквивалентно объему воды, потерянной около пределов жидкости и пластичности, когда глина переходит из жидкого состояния в сухое, и если уменьшение содержания воды продолжается, нет наблюдается уменьшение объема. Это предельное значение называется пределом усадки. Следовательно, предел усадки - это содержание влаги, при котором объем почвы не будет уменьшаться в дальнейшем, если содержание влаги уменьшится. Предел пластичности - это содержание влаги, при котором почва переходит из полутвердого в пластичное (гибкое) состояние.Предел жидкости - это влажность, при которой почва переходит из пластичного в вязкое жидкое состояние [19]. В геотехнической инженерии обычно используются пределы жидкости и пластичности. Эти пределы используются для классификации мелкозернистого грунта в соответствии с Единой системой классификации почв, системой AASHTO или TS1500 (Турция).

    Рисунок 7.

    Зависимость водности почв от объема.

    3.1.1. Гидравлические свойства проводимости глины

    Вода представляет собой проблему в инженерно-геологических изысканиях, например, вода в пустотах в массе грунта, течет в порах или в давлении или напряжении, которое вода создает в порах.Глина играет важную роль в возникновении проблем с водой, особенно на мелких почвах, и эти проблемы включают проблемы проницаемости, сопротивления сдвигу, схватывания и набухания. Кроме того, дополнительными проблемами могут быть капиллярность, замерзание и инфильтрация. Конструкции, построенные на глине, и устойчивость откосов особенно проблематичны при воздействии воды. Плотины и дамбы также вызывают разрушение конструкций без протечек и трубопроводов [4]. Следовательно, необходимо оценить количество подземной фильтрации при различных гидравлических условиях для исследования проблем, связанных с перекачкой воды для подземного строительства, а также для анализа устойчивости земляных дамб и грунтовых подпорных сооружений, которые подвергаются фильтрующим силам [19].

    Коэффициент гидравлической проводимости, обычно используемый в геотехнической инженерии, также используется для определения проницаемости. Гидравлическая проводимость - это свойство, которое выражает то, как вода течет в почве. Почвы проницаемы из-за наличия взаимосвязанных пустот, через которые вода может течь из точек с высокой энергией в точки с низкой энергией [4]. Вязкость жидкости, распределение пор по размерам, гранулометрический состав, коэффициент пустотности, шероховатость частиц и степень насыщения почвы влияют на гидравлическую проводимость почв.Глиняная почва имеет электрические ионы, поэтому гидравлическая проводимость глин влияет на концентрацию ионов и толщину слоев воды, удерживаемых на частицах глины. В таблице 1 приведены типичные значения для почв. Значение гидравлической проводимости грунтов определяет испытание постоянным напором (для грубых грунтов) и испытание падающим напором (для мелкозернистых грунтов) [19].

    Тип грунта k (см / с)
    Чистый гравий 100–1.0
    Крупный песок 1,0–0,01
    Мелкий песок 0,01–0,001
    Глина илистая 0,001–0,00001
    Глина <0,000001

    Таблица 1

    Гидравлическая проводимость грунтов [19].

    3.1.2. Поведение глины при набухании и усадке

    Эффект набухания и усадки на мелкозернистых грунтах часто рассматривается как проблема в инженерно-геологических приложениях.Усадочные свойства глинистых грунтов эффективно снижают прочность откоса и несущую способность фундамента. Уменьшение обычно наблюдается в результате испарения в засушливом климате, сокращения грунтовых вод и внезапных засушливых периодов. Набухание можно увидеть из-за поднимающейся воды. Эти изменения объема вредны для тяжелого строительства и дорожных покрытий. Набухание возникает, когда внутреннее давление превышает давление покрытия или конструкции. Материальный ущерб от набухания-усадки почв более вероятен в Соединенных Штатах из-за более высокого давления воды, наводнений, тайфунов и землетрясений [4].

    Джонс и Хольц [20] подсчитали, что усыхание и набухание почвы ежегодно наносят ущерб небольшим зданиям и дорожным покрытиям на сумму около 2,3 миллиарда долларов США. Этот ущерб вдвое превышает ущерб от наводнений, землетрясений и ураганов. Крон и Слоссон [21] подсчитали, что ежегодно набухающие почвы причиняют ущерб примерно в 7 миллиардов долларов. По данным Холтса и Харта [22] 60% из 250 000 недавно построенных домов несут незначительные обширные повреждения почвы и 10% несут значительные обширные повреждения почвы каждый год в Соединенных Штатах.Кодуто [2] отметил, что обширные почвы нанесли зданию ущерб на 490 000 долларов за 6-летний период. Ориентировочная годовая стоимость из-за значительных структурных повреждений, таких как трещины на проезжей части, тротуарах и цокольных этажах, пучение дорог и дорожных сооружений, списание зданий; а нарушение работы трубопроводов и других коммунальных служб в Колорадо, по данным AMEC [23], составляет 16 миллиардов долларов.

    Давление набухания зависит от типа глинистого минерала, структуры и ткани почвы, катионообменной способности, pH, цементации и органических веществ.Любая связная почва может включать глинистые минералы, но минералы монтмориллонитовой или бентонитовой глины более активны в отношении набухания-усадки. Набухание рассчитывается путем экспериментов по набуханию с химическим и минералогическим анализом, индексами почвы и некоторыми эмпирическими формулами из классификаций почв. Предел усадки определяется на основании лабораторных испытаний или приблизительного расчета, рекомендованного Casagrande. Свойства глины улучшаются за счет химических добавок, таких как цемент, известь, известково-летучая зола, цементно-летучая зола, хлорид кальция и т. Д.[24].

    Сооружения переносят нагрузки на грунт через свои основания. Напряжение, создаваемое конструкцией, сжимает грунт. Это сжатие массы грунта приводит к уменьшению объема массы, что приводит к оседанию конструкции, и это следует удерживать в допустимых пределах. Поэтому перед началом строительства следует оценить осадку (сжатие). Осадка определяется как сжатие слоя почвы из-за строительства фундамента или других нагрузок.Сжатие проявляется в деформации, перемещении частиц почвы и вытеснении воды или воздуха из пустот. В целом осадка почвы под нагрузкой делится на три категории: немедленная или упругая осадка, которая вызвана упругой деформацией сухой почвы или влажных и насыщенных грунтов без изменения содержания влаги; оседание первичного уплотнения, которое является результатом изменения объема насыщенных связных грунтов из-за вытеснения воды, занимающей пустоты; и вторичная осадка уплотнения - это изменение объема при постоянном действующем напряжении из-за пластической регулировки грунтовых тканей [19].Оседание уплотнения наблюдается, когда конструкция построена на насыщенной глине или когда уровень воды постоянно понижается. Одновременно наблюдается оседание уплотнения под собственным весом или весом грунта, который существует над глиной. Оседание глины происходит долго, причина этого - низкая гидравлическая проводимость и медленный дренаж глины. Осадку почвы определяют путем одномерного уплотнения (одометр) и гидравлического уплотнения (Роу).В экспериментах регистрируются вертикальные нагрузки и коэффициент пустотности. После этого соотношение между давлением и коэффициентом пустотности определяется по данным измерений. Эти данные также полезны при определении коэффициента консолидации. Коэффициент консолидации определяется методом корня из времени и методом log-t. На рисунке 8 показана взаимосвязь между коэффициентом пустотности и напряжением для типичного теста одометра на уплотнение.

    Рисунок 8.

    График типичного теста для проверки консолидации с помощью одометра.

    3.1.3. Прочность глины на сдвиг

    Прочность грунта на сдвиг - один из наиболее важных аспектов геотехнической инженерии. Прочность грунта обеспечивает безопасность геотехнических сооружений. Несущая способность, устойчивость откосов и несущая стена фундаментов зависят от прочности грунта на сдвиг. Разрушение грунтов происходит в виде сдвига. Если напряжения в грунте превышают предел прочности на сдвиг, происходит разрушение. Разрушение почвы при сдвиге зависит от взаимодействия между частицами почвы.Эти взаимодействия делятся на силу трения и прочность сцепления [2]. Когда глинистые почвы подвергаются сдвигу, изменение объема дренажного сдвига зависит от давления окружающей среды, а также от истории напряжений почвы. Кроме того, нагрузка на глинистые почвы не позволяет воде выходить из пор, и, таким образом, создается избыточное давление воды. Если нагрузка не вызывает разрушения, избыточное давление воды гасится, происходит уплотнение и наблюдается изменение объема.Длительный процесс изменения объема глин объясняется очень низкой гидравлической проводимостью. Определение прочности глины на сдвиг выполняется с помощью испытания на прямой сдвиг, испытания на трехосное сжатие, испытания на лопатку и стандартных испытаний на проникновение [4]. На рисунке 9 представлена ​​взаимосвязь между напряжением сдвига и нормальным напряжением для типичного испытания прочности на сдвиг и испытания на трехосное сжатие. После построения диапазона разрушения получают сцепление (c) и угол внутреннего трения (f).

    Рисунок 9.

    График типичного испытания прочности на сдвиг испытанием на трехосное сжатие.

    3.2. Физико-химические и микроструктурные свойства глины

    Для определения физико-химических и микроструктурных свойств глинистых почв обычно используются рентгеновский дифрактометр (XRD) и сканирующий электронный микроскоп (SEM). Кроме того, для определения физико-химических свойств и структуры почв используются pH-тест, электропроводность, емкость катионного обмена, гелиевый пикнометр, ртутная порозиметрия (MIP), анализ площади поверхности (SSA), Brunauer-Emmett-Teller ( BET) или аналогичным образом проводят тест с дзета-потенциалом и дисперсией по длине волны рентгеновской флуоресценции и дифференциальный термический анализ (DTA).Значение pH указывает на степень присутствия ионов H + или OH–. Изменение pH влияет на отношения почвы и воды. Низкий pH указывает на флокуляцию, а высокий pH указывает на дисперсию. Электропроводность глины определяется числом и типом ее ионов. Катионообменная емкость - это мера способности вытеснения изоморфа. Изоморфное смещение - это когда остаются другие ионы с валентностью, равной или отличной от валентности этих ионов. Это изменение возникает из-за несбалансированного электрического заряда при каждом изменении.Чтобы предотвратить этот дисбаланс, катионы в окружающей среде попадают на края глин и между блоками.

    Анализ с помощью рентгеновского дифрактометра (XRD): Минералогический состав почвы имеет решающее значение из-за его значительного влияния на поведение почвы; на почвы в первую очередь влияют физические, химические и механические свойства глины, а также содержание минералов. В геотехнике важно определить тип минералов, присутствующих в глине, а также их пропорции, чтобы понять механическое поведение.Кривая XRD для типичной глины показана на рисунке 10. Картины дифракции рентгеновских лучей глины показывают минералогический состав монтмориллонита, анортита, кварца, кальцита и кремнезема.

    Рис. 10.

    Кривая XRD для типичной глины.

    Порозиметрический анализ проникновения ртути (МИП): в инженерно-геологической сфере распределение пор по размерам глины существенно влияет на геотехническое поведение почвы. Распределение размеров пор для типичной глины, полученной при испытаниях MIP, показано на Рисунке 11.На этом рисунке показана взаимосвязь между возрастающим проникновением и диаметром пор.

    Рис. 11.

    Распределение пор по размерам для типичной глины по результатам испытаний MIP.

    Растровый электронный микроскоп (СЭМ): микроструктура почв, особенно глин, исследуется с помощью универсального аналитического автоэмиссионного СЭМ сверхвысокого разрешения. СЭМ обеспечивает высокий уровень увеличения. Образцы почвы, увеличенные до 1 000 000 раз, позволяют оценить различия на поверхности путем визуализации структур поверхности.Изменения микроструктурного развития почв играют важную роль в их поведении. В частности, эти параметры могут привести к лучшему пониманию инженерных свойств уплотненных грунтов. СЭМ-изображения типичных глин представлены на рисунке 12. Таким образом, в образцах почвы наблюдаются флокулированные и диспергированные структуры.

    Рис. 12.

    СЭМ-изображения типичной глины при разном увеличении (a. 1000 ×, b. 10 000 ×, c. 35 000 ×).

    Анализ площади поверхности (SSA): На удельную поверхность влияет гранулометрический состав, а также типы и количества различных глинистых минералов.На удельную поверхность влияют физико-химические свойства почв.

    4. Предыдущие связанные исследования

    Глинистые почвы важны при строительстве зданий, плотин, дорог, аэропортов, тротуаров и автомагистралей [25–34]. Необходимо решить почвенные проблемы, встречающиеся в инженерно-геологических изысканиях. Благодаря двойному слою глина может впитывать воду в 10–500 раз больше собственного веса. Кроме того, это считается проблемной почвой, которая может оседать под нагрузкой, набухать или сжиматься при попадании воды.Karmi et al. [26] исследовали два тематических исследования насыпных дамб в Иране. Исследователи указали, что для больших плотин угол внутреннего трения играет более важную роль в анализе устойчивости, чем параметр сцепления. Чабалар [28] исследовал различное содержание мелких частиц и их влияние на трехосное поведение крупного песка. Следовательно, высокая сжимаемость и другие глиноподобные свойства смесей объяснялись характеристиками частиц (размером и формой). Shanyoug et al. [31] исследовали влияние мелких частиц на механическое поведение полностью разложившегося гранита во время динамического уплотнения цементного раствора.Следовательно, исследователи указали, что эффективность уплотнения увеличивается с увеличением содержания мелких частиц.

    Naik et al. [32] исследовали поселение в институциональном здании, расположенном в Южном Гоа, Индия. В этом здании образовались трещины, когда конструкция достигла уровня балок. Некоторые фундаменты были расположены в рыхлом насыпном грунте, в соответствии со стандартным тестом на проникновение, и, таким образом, наблюдалась дифференцированная осадка фундаментов. Дафалла [34] исследовал сцепление и угол внутреннего трения для зернистых грунтов, используя испытание на прямой сдвиг для различного содержания глины и различного содержания влаги.Следовательно, исследователи наблюдали резкое падение когезии и угла внутреннего трения во влажной смеси глины и песка при высоком содержании глины. Кроме того, многие исследователи изучали инженерно-геологические свойства глин и их микроструктуру [35–39]. Rajasekaran et al. [35] исследовали влияние извести и гидроксида натрия на микроизменения в двух морских глинах с помощью сканирующей электронной микроскопии (SEM). Эти исследователи предположили, что добавление извести и гидроксида натрия создает оптимальную пуццолановую реакцию.

    Horpibulsuk et al. [36] исследовали развитие прочности и изменения микроструктуры стабилизированной илистой глины. Для качественного и количественного анализа микроструктур образцов были проведены исследования с использованием SEM, проникновения ртути и термогравитационного анализа. Исследователи предположили, что объем крупных пор увеличился из-за наличия более крупных частиц за короткий период времени, тогда как объем мелких пор уменьшился из-за затвердевания гидратированного цемента.Некоторые исследования показали, что пределы Аттерберга и гранулометрический состав являются индикаторами минералогии почвы и для определения многих свойств мелкозернистой почвы [37–38]. В то же время пределы Аттерберга влияют на гранулометрический состав и минеральный состав. Например, увеличение площади поверхности наблюдается при увеличении пределов жидкости [37, 40–43]. Грабовская-Ольшевская [44] исследовала взаимосвязь между коллоидной активностью и удельной поверхностью модельных почв из смесей каолинита и бентонита.Исследователи заметили, что при увеличении глинистой фракции увеличивается и общая площадь поверхности. Rahardjo et al. [45] исследовали индексные свойства и испытания инженерных свойств остаточных грунтов из двух основных геологических формаций в Сингапуре. Эти исследователи предположили, что вариации индекса и технических свойств остаточных грунтов на разных глубинах в значительной степени зависели от распределения пор по размерам, которое варьируется в зависимости от степени выветривания.

    Dananaj et al.[46] исследовали микроструктурное образование и геотехнические свойства Ca-бентонита и Na-бентонита с помощью XRD, химического анализа и сканирующей электронной микроскопии (SEM). Исследователи предположили, что различия в качестве бентонита и количестве смектита влияют на проницаемость. Димитрова и Янфул [47] исследовали факторы, влияющие на сопротивление сдвигу хвостов горных выработок. Эти исследователи предположили, что добавление глины в хвосты рудника вызовет снижение силы трения, но величина этого уменьшения была больше, когда глина была бентонитовой, и ниже, когда это был каолинит.Для стабилизации глин обычно требуются песок, известь, цемент и летучая зола в качестве добавочных материалов. Стабилизация почвы с помощью добавок - самый старый и самый распространенный метод улучшения почвы. Известные применения датируются еще древнегреческими, египетскими и римскими временами [48]. В глинистых почвах предпочтение отдается песку из-за простоты его применения и экономичности. Некоторые исследователи наблюдали глины со стабилизацией песка для исследования механических и микроструктурных изменений почв [49–56].Другие исследователи использовали химические добавки (известь, цемент, летучую золу и битум) для стабилизации глинистых почв [57–62]. Химическая стабилизация может быть наиболее экономичным и практичным методом стабилизации грунта, а также для проблемных грунтов под существующими конструкциями.

    Аль-Мухтар и др. [61] исследовали влияние известковых стабилизаторов на геотехнические свойства высокопластичной глины с использованием микроскопических данных. Эти исследователи предположили, что обработка экспансивного поведения почвы в геотехнических свойствах была вызвана в первую очередь пуццолановой реакцией.Аль-Мухтар и др. [62] исследовали расход извести на 10% -ное улучшение извести, каолинит, иллит, смектит-каолинит, смектит-иллит и смектит, используя дифракционные рентгеновские лучи и термогравиметрические тесты. Эти исследователи предположили, что количество извести, потребляемой во время кратковременной реакции, варьируется от нуля для каолинита до максимального для смектита натрия. Хемисса и Махамеди [63] исследовали улучшение с помощью смеси цемента и извести в различных соотношениях на расширяющейся переуплотненной глине. Эти исследователи наблюдали увеличение прочности и долговечности почвы за счет реакции между почвой и добавочными материалами.При химической стабилизации происходят катионообмен, флокуляция и агломерация, реакции карбонизации и пуццолановые реакции. Обрабатываемость почвы влияет на механизмы катионного обмена, флокуляции и агломерации, и, кроме того, несущая способность влияет на реакции карбонизации и пуццолановые реакции [64].

    Кроме того, глина во многих случаях желательна из-за ее свойств, которые могут быть использованы при проектировании инженеров-геологов. Глина обеспечивает непроницаемость насыпных дамб, а глина для захоронения отходов обеспечивает эффективную поддержку в виде гелеобразной суспензии для необработанных почв при выемке для удержания воды в пруду.Глина также становится вяжущим материалом, когда она в определенном соотношении соединяется с крупнозернистыми почвами.

    5. Выводы

    Геотехническая инженерия - одна из важнейших частей любого строительства. Как бы хорошо ни была спроектирована надстройка, начинать строительство нет смысла, если не учтены грунтовые материалы. Как сказал Карл Терзаги в 1939 году, : «… В инженерной практике трудности с почвами почти исключительно связаны не с самими почвами, а с водой, содержащейся в их пустотах.На планете без воды не было бы необходимости в механике почвы. ”Недостаточно видеть почву только с поверхности, также необходимо определить, меняются ли классы почвы и грунтовые воды. Глина оказывает большое влияние на инженерное поведение грунтов. Глинистые почвы встречаются в природе. Отложения, выветривание и напряжения во время геологических процессов гарантируют, что естественная структура отличается. В геотехнической инженерии, помимо определения свойств осадки, набухания и прочности, при обнаружении глины необходимо знать минеральные свойства почвы, структуру и прочность частиц.В этой главе были рассмотрены свойства глины, роль глины в инженерно-геологических и геотехнических исследованиях глины. В этой главе были определены важность и преимущества определения свойств глины перед строительством здания. Следовательно, показано, что глина имеет разные свойства, и понятно, что некоторые почвы ведут себя по-разному. Эта глава содержит материалы, взятые из различных источников, а также обзор литературы и предоставит доступную информацию для инженеров-строителей и инженеров-геологов относительно глины.

    .

    Разделение смесей: можете ли вы разработать устройство для этого?

    Области науки Биотехнологии
    Сложность
    Требуемое время Среднее (6-10 дней)
    Предварительные требования Нет
    Наличие материалов Возможно, потребуется специальный заказ железных опилок и неодимовых магнитов.См. Подробности в списке материалов и оборудования.
    Стоимость Низкая (20–50 долларов)
    Безопасность Чтобы разрезать пластиковую бутылку ножом и ножницами, может потребоваться помощь взрослого. Соблюдайте все меры безопасности при обращении с неодимовыми магнитами; эти магниты никогда не должны сжиматься, никогда не сжимать пальцы или кожу, никогда не проглатываться, и их следует держать подальше от всех электронных устройств.Храните их в недоступном для маленьких детей и домашних животных месте. Если используется плита или духовка, должен помочь взрослый.

    Абстрактные

    Вы когда-нибудь заглядывали в кухонный шкаф и находили контейнер с крошечными белыми зернами, но не были уверены, сахар это или соль? Они очень похожи. Как их отличить? Вы знаете, что сахар и соль очень разные на вкус. Вкус на самом деле называется свойством , и свойства используются для описания и идентификации различных материалов.Свойства также можно использовать для физического разделения вещей. В этом научном проекте вы будете использовать разные свойства, чтобы создать способ разделения смеси трех разных материалов: соли, песка и железных опилок.

    Объектив

    Придумайте способ разделить смесь соли, песка и железной стружки, исходя из различных свойств материалов.

    Поделитесь своей историей с друзьями по науке!

    Да, Я сделал этот проект! Пожалуйста, войдите в систему (или создайте бесплатную учетную запись), чтобы сообщить нам, как все прошло.

    Планируете ли вы сделать проект от Science Buddies?

    Вернитесь и расскажите нам о своем проекте, используя ссылку «Я сделал этот проект» для выбранного вами проекта.

    Вы найдете ссылку «Я сделал этот проект» на каждом проекте на веб-сайте Science Buddies, так что не забудьте поделиться своей историей!

    Кредиты

    Тейша Роуленд, доктор наук

    Цитируйте эту страницу

    Здесь представлена ​​общая информация о цитировании.Обязательно проверьте форматирование, включая использование заглавных букв, для метода, который вы используете, и обновите цитату по мере необходимости.

    MLA Стиль

    Сотрудники Science Buddies. «Разделение смесей: можете ли вы разработать для этого устройство?» Друзья науки , 23 июня 2020, https://www.sciencebuddies.org/science-fair-projects/project-ideas/BioChem_p046/biotechnology-techniques/separating-mixtures-design-device. Доступ 30 октября 2020 г.

    APA Style

    Сотрудники Science Buddies.(2020, 23 июня). Разделение смесей: можете ли вы разработать устройство для этого? Извлекаются из https://www.sciencebuddies.org/science-fair-projects/project-ideas/BioChem_p046/biotechnology-techniques/separating-mixtures-design-device

    Дата последнего редактирования: 2020-06-23

    Введение

    Соль и сахар очень похожи; они оба крошечные, белые зерна. Но вы можете легко отличить их друг от друга, потому что они очень разные на вкус.Вкус - это то, что называется свойством материи . Все, что вы видите вокруг себя, - это материя . Свойство материи - это, по сути, способ описания материи и то, как мы можем сказать, что она отличается от другой материи. Например, размер и цвет - это свойства материи, и мы можем использовать их, чтобы сказать, что и соль, и сахар представляют собой крошечные белые зерна. Вот в чем они похожи. Мы можем использовать другое свойство - свойство вкуса - чтобы описать разницу между сахаром и солью; сахар на вкус сладкий, а соль соленая!

    Мы можем не только использовать свойства материи для описания чего-либо, но мы также можем использовать их для отделения чего-либо от смеси.Ученые делают это в лабораториях все время, когда у них есть смесь, но хотят изучить только одну часть этой смеси. Какие важные свойства следует использовать, если вы хотите разделить разные части смеси?

    Хотя вы, вероятно, знакомы с описанием вещей на основе их размера, цвета и вкуса, еще одно полезное свойство, с которым вы, возможно, не знакомы, связано с магнитами. Магнит создает вокруг себя невидимое магнитное поле .На некоторые типы материи это поле не влияет, но на другие типы материи. В частности, магнитные поля могут притягивать другие материалы, которые также обладают магнитными свойствами. Например, вы наверняка видели магнит, наклеенный на дверцу холодильника. Обычно это происходит потому, что дверь сделана из металла. Многие различные типы металлов, такие как железо, подвержены влиянию магнитов и могут притягиваться к ним, как показано на рисунке 1 ниже.


    Рисунок 1. Магниты притягивают к себе некоторые виды материи. Например, магнит в верхней части этого рисунка притягивает к себе много порошковой стали. В стали есть железо, которое обладает магнитными свойствами.

    Если вы хотите разделить смесь, еще одно важное свойство вещества, которое может быть использовано, - это растворимость (произносится сол-ты-БИХ-лух-ти). Мы думаем о растворимости, когда что-то растворяем в воде. Если вещество растворимо в воде, то это вещество будет растворено или исчезнет, ​​когда вы добавите его в воду.Например, представьте, как сахар растворяется в горячей воде для чая или в горячей чашке кофе. Сахар растворим в воде. Если что-то нерастворимое или нерастворимое , то оно не растворяется, и вы все равно будете видеть его плавающим в воде или на дне контейнера. Например, представьте, что вы бросаете кусок твердого гравия в ручей; он опускается на дно, но не растворяется в воде. Итак, гравий не растворяется в воде. Это означает, что у вас может быть смесь сахара (растворимого в воде) и гравия (нерастворимого в воде), а затем смешать их с водой (горячая вода лучше всего подходит для растворения вещей), и сахар исчезнет в воде, пока гравий будет заметно отставлен.Но даже если растворимый материал станет невидимым, он все еще присутствует. Если бы вы что-то растворили в воде, а затем испарили всю жидкость, у вас снова остался бы сухой, растворимый кусок вещества (в данном примере сахар).

    Наконец, ученые также часто используют плотность , что является еще одним свойством материи, когда они пытаются разделить смесь. Технически плотность - это масса или вес объекта, деленная на его объем .По сути, это означает, что если у вас есть два камня одинакового размера, но один намного тяжелее другого, более тяжелый камень имеет большую плотность или плотнее, чем более легкий. Ученые часто используют центрифуги для разделения различных материалов в зависимости от их плотности. В центрифуге пробирки наполняются какой-то смесью, а затем центрифуга в основном вращает эти пробирки очень быстро. По окончании прядения различные части смеси должны быть разделены в зависимости от их плотности, причем наиболее плотные части должны находиться на дне трубки, а менее плотные - выше в трубке.

    В этом научном проекте вы разработаете и протестируете способ разделения смеси соли, песка и железных опилок на основе различных свойств вещества. См. Таблицу 1 в Методике эксперимента для получения информации об этих различных типах веществ и о том, как их можно разделить в зависимости от того, как они реагируют на магниты, их растворимости в воде и их плотности. Вам покажут, как сделать устройство для отделения железных опилок от песка с помощью магнитов. Вы можете добавить к этому устройству или создать новое устройство (или несколько устройств), чтобы получить полный протокол или процедуру для разделения смеси соли, песка и железных опилок.

    Вы определите, насколько хорошо работает ваш метод, основываясь на урожайности и чистоте ваших результатов. Доходность - это то, сколько чего-то у вас получится. Например, если у вас есть смесь соли, песка и железных опилок, и в смеси есть 1 стакан (C) каждой из них, и вы можете отделить ½ C железных опилок, ваш выход для железа заявка будет составлять ½ C. Вы также можете рассчитать -процентную доходность , которая позволит вам увидеть, сколько вы получили в итоге с по сравнению с , с какой вы начали.Например, процентный выход железных опилок в этом примере будет составлять 50% (поскольку вы начали с 1 ° C и закончили с ½ C, а ½ C составляет 50% от 1 ° C). Чем выше урожай, тем лучше работает ваш протокол! Purity - это насколько чистый ваш результат; другими словами, есть ли у вас заражений, вещей, которые вам не нужны. Например, если вы хотели отделить железные опилки от соли, но в итоге в ваших железных опилках оказалось немного соли, то для соли будет загрязнения .Если у вас много загрязняющей соли, то железные опилки не очень чистые, но если у вас только немного загрязняющей соли, тогда железные опилки могут быть очень чистыми. Чем чище ваши результаты, тем лучше работает ваш протокол!

    Это довольно открытый научный проект с множеством возможных решений и возможностей для творческого поиска. Так что будьте готовы разработать устройства и методы, которые разделят вашу смесь!

    Термины и понятия

    • Дело
    • Собственность материи
    • Магнит
    • Растворимость
    • Растворимый
    • Растворять
    • Нерастворимый
    • Плотность
    • Центрифуга
    • Протокол
    • Урожайность
    • Чистота

    Вопросы

    • Как вы думаете, можно отделить железные опилки, смешанные с песком?
    • Какие материалы притягиваются магнитами?
    • Как можно разделить смесь двух веществ, если одна растворима в воде, а другая - нет?
    • Что такое плотность?
    • Какую машину можно использовать для разделения предметов по их плотности?

    Библиография

    Вы можете провести дальнейшие исследования, посетив следующие веб-сайты, которые предоставляют информацию о веществе, магнитах, растворимости и центрифугах:

    • Рейдер, А.(нет данных). Иметь значение. Chem4kids.com Рейдера. Проверено 13 августа, 2013.
    • Рейдер А. (нет данных). Что такое магнит? Physics4kids.com Рейдера. Проверено 13 августа, 2013.
    • Kids.Net.Au. (нет данных). Растворимость. Проверено 13 августа, 2013.
    • Вуд, К. (20 сентября 2012 г.). Центрифуги. Объясни это. Проверено 13 августа, 2013.

    Чтобы получить помощь в создании графиков, посетите этот веб-сайт:

    • Национальный центр статистики образования, (нет данных). Создать график .Проверено 25 июня 2020.

    Лента новостей по этой теме

    Примечание: Компьютеризированный алгоритм сопоставления предлагает указанные выше статьи. Это не так умно, как вы, и иногда может давать юмористические, смешные или даже раздражающие результаты! Узнать больше о ленте новостей .

    Преимущества обработанных пищевых продуктов: (EUFIC)

    Последнее обновление: 1 июня 2010 г.

    1. Введение и определения

    Все мы обрабатываем пищевые продукты каждый день, когда готовим еду для себя или своей семьи, и практически все продукты проходят определенную обработку, прежде чем они будут готовы к употреблению. Некоторые продукты даже опасны, если их есть без надлежащей обработки. Самое основное определение пищевой промышленности - это «множество операций, с помощью которых сырые пищевые продукты становятся пригодными для потребления, приготовления или хранения».Пищевая промышленность включает в себя любые действия, которые изменяют или превращают сырые растительные или животные материалы в безопасные, съедобные и более приятные на вкус пищевые продукты. В крупномасштабном производстве пищевых продуктов обработка включает применение научных и технологических принципов для сохранения пищевых продуктов путем замедления или остановки естественных процессов разложения. Это также позволяет предсказуемым и контролируемым образом изменять пищевые качества продуктов. Пищевая промышленность также использует творческий потенциал переработчика для преобразования основного сырья в ряд вкусных привлекательных продуктов, которые обеспечивают интересное разнообразие в рационе потребителей.Без обработки пищевых продуктов было бы невозможно удовлетворить потребности современного городского населения, а выбор продуктов питания был бы ограничен сезонностью.

    Термин «обработанные пищевые продукты» используется многими с определенным пренебрежением, предполагая, что обработанные пищевые продукты в некотором роде уступают своим необработанным аналогам. Однако важно помнить, что обработка пищевых продуктов использовалась на протяжении веков для того, чтобы сохранить продукты или просто сделать их съедобными. Фактически, переработка охватывает всю пищевую цепочку от сбора урожая на ферме до различных форм кулинарного приготовления в домашних условиях, и это значительно облегчает обеспечение безопасными продуктами питания населения во всем мире.

    Обработка пищевых продуктов может привести к улучшению или ухудшению питательной ценности продуктов, иногда и одновременно, и может помочь сохранить питательные вещества, которые в противном случае были бы потеряны при хранении. Например, шоковая заморозка овощей вскоре после сбора урожая замедляет потерю чувствительных питательных веществ. Сырые бобы несъедобны, и простой процесс нагревания (например, кипячения) делает их съедобными, уничтожая или инактивируя определенные антипитательные факторы, которые они содержат. Процесс варки овощей действительно приводит к потере витамина С, но он также может высвобождать некоторые полезные биоактивные соединения, такие как бета-каротин в моркови, которые в противном случае были бы менее доступны во время пищеварения, потому что нагревание разрушает стенки растительных клеток.

    На протяжении веков ингредиенты выполняли полезные функции в различных продуктах питания. Наши предки использовали соль для консервирования мяса и рыбы, добавляли травы и специи для улучшения вкуса продуктов, консервированные фрукты с сахаром и маринованные овощи в растворе уксуса. Сегодня потребители требуют и пользуются питательными, безопасными, удобными и разнообразными продуктами питания. Это возможно благодаря методам обработки пищевых продуктов (например, пищевым добавкам и достижениям в области технологий). Пищевые добавки добавляются с определенной целью, будь то обеспечение безопасности пищевых продуктов, повышение питательной ценности или улучшение качества пищевых продуктов.Они играют важную роль в сохранении свежести, безопасности, вкуса, внешнего вида и текстуры продуктов. Например, антиоксиданты предотвращают прогоркание жиров и масел, тогда как эмульгаторы предотвращают разделение арахисового масла на твердую и жидкую фракции. Пищевые добавки дольше защищают хлеб от плесени и позволяют фруктовому джему «застыть», чтобы его можно было намазывать на хлеб.

    2. История

    Люди веками перерабатывали пищу (см. Таблицу 1). Самые старые традиционные методы включали в себя сушку на солнце, консервирование мяса и рыбы с солью или фруктов с сахаром (то, что мы теперь называем вареньем).Все они работают исходя из того, что уменьшение наличия воды в продукте увеличивает срок его хранения. Совсем недавно технологические инновации в переработке превратили наши продукты питания в богатый ассортимент, который сегодня доступен в супермаркетах. Кроме того, пищевая промышленность позволяет производителям производить продукты с улучшенным питанием («функциональные пищевые продукты») с добавлением ингредиентов, которые обеспечивают определенные преимущества для здоровья помимо основного питания.

    2.1 История консервирования

    Консервирование возникло в начале 19 годов, когда войска Наполеона столкнулись с серьезной нехваткой продовольствия.В 1800 году Наполеон Бонапарт предложил награду в размере 12 000 франков каждому, кто сможет разработать практический метод консервирования продуктов для маршевых армий; широко распространено мнение, что он сказал: «Армия идет на живот». После многих лет экспериментов Николя Апперт представил свое изобретение запечатывания продуктов в стеклянных банках и их приготовления и выиграл приз в 1810 году. В следующем году Апперт опубликовал «Искусство сохранения животных» («Искусство сохранения животных»). and Vegetable Substances), которая была первой в своем роде поваренной книгой по современным методам консервирования пищевых продуктов.Также в 1810 году англичанин Питер Дюран применил процесс Апперта, используя различные сосуды из стекла, керамики, олова или других металлов, и получил первый патент на консервирование от короля Георга III. Это можно считать происхождением современной консервной банки.

    2.2 История замораживания

    Современная индустрия замороженных продуктов была основана Кларенсом Бёрдси в Америке в 1925 году. Он был торговцем мехом в Лабрадоре и заметил, что филе рыбы, оставленное туземцами для быстрой заморозки в арктических зимах, сохраняет вкус и текстуру свежей рыбы лучше, чем рыба, замороженная при более умеренных температурах в другое время года.Ключом к открытию Бёрдси была важность скорости замораживания, и он первым изобрел промышленное оборудование для быстрой заморозки продуктов. Сегодня мы знаем, что в сочетании с соответствующей обработкой перед замораживанием это быстрое замораживание может обеспечить превосходное сохранение пищевой ценности широкого спектра пищевых продуктов.

    Таблица 1. Хронологическое развитие технологий пищевой промышленности

    Традиционная обработка Более современные процессы
    (примерно с 1900 г.)
    Самые современные методы
    (после 1960 г.)

    Консервы

    Варка с экструзией

    Сублимационная сушка

    Ферментация

    Замораживание и охлаждение

    Инфракрасная обработка

    Замораживание

    Пастеризация

    Облучение

    Сушильный шкаф

    Стерилизация

    Магнитные поля

    Травление

    Сверхвысокая температура (УВТ)

    СВЧ-обработка

    Соление

    Упаковка в модифицированной атмосфере

    Курение

    Омический нагрев

    Сушка на солнце

    Импульсные электрические поля

    Распылительная сушка

    Ультразвук

    3.Основные преимущества обработанных пищевых продуктов

    3.1 Вкусовые качества и сенсорные улучшения

    Практически все пищевые продукты перед употреблением проходят определенную обработку. Проще говоря, это может быть очистка банана от кожуры или отваривание картофеля. Однако для некоторых продуктов, таких как пшеница, требуется довольно тщательная обработка, прежде чем они станут вкусными. Сначала уборка зерна, затем удаление шелухи, стеблей, грязи и мусора. Очищенное зерно обычно варят или измельчают в муку, а затем из него часто превращают другой продукт, такой как хлеб или макароны.

    Органолептическое (сенсорное) качество некоторых пищевых продуктов напрямую зависит от технологии их обработки. Например, запеченные бобы приобретают кремовую консистенцию в результате тепловой обработки во время консервирования. Экструдированные и воздушные продукты, такие как сухие завтраки или чипсы, было бы практически невозможно производить без крупномасштабного современного оборудования для пищевой промышленности.

    3,2 Консервированные и улучшенные питательные свойства

    Обработка, такая как замораживание, сохраняет питательные вещества, которые естественным образом присутствуют в пищевых продуктах.Другие процессы, такие как приготовление пищи, иногда могут улучшить пищевую ценность, делая питательные вещества более доступными. Например, приготовление и консервирование помидоров для приготовления томатной пасты или соуса делает биоактивное соединение ликопин более доступным для организма. При аккуратной обработке при переработке какао и шоколада сохраняется уровень флавоноидов, таких как эпикатехин и катехины, но их содержание может быть снижено при плохих условиях обработки. Ликопин и флавоноиды обладают антиоксидантными свойствами, которые, согласно некоторым исследованиям, способствуют поддержанию здоровья сердца и могут снизить риск некоторых видов рака.

    В настоящее время исследователи изучают возможность изменения усвояемости питательных веществ посредством обработки пищевых продуктов для создания продуктов с повышенной доступностью питательных веществ. Например, похоже, что гомогенизация молока может уменьшить размер капель жира, казеинов и некоторых сывороточных белков. Похоже, что это приводит к лучшей усвояемости, чем необработанное молоко. Ранние исследования показывают, что манипуляции со структурами триациглицерина (вилкообразного основного скелета жиров) также могут влиять на перевариваемость жиров, тем самым изменяя их влияние на риск сердечно-сосудистых заболеваний после приема внутрь.

    3.3 Безопасность

    Многие методы обработки обеспечивают безопасность пищевых продуктов за счет уменьшения количества вредных бактерий, которые могут вызывать заболевания (например, пастеризация молока). Сушка, маринование и копчение снижают активность воды (т.е. воду, доступную для роста бактерий) и изменяют pH пищевых продуктов, тем самым ограничивая рост патогенных и вызывающих порчу микроорганизмов и замедляя ферментативные реакции. Другие методы, такие как консервирование, пастеризация и ультравысокая температура (УВТ), уничтожают бактерии посредством термической обработки.

    Еще одно преимущество обработки - уничтожение антипитательных факторов. Например, приготовление пищи разрушает ингибиторы протеазы, такие как ингибиторы трипсина, содержащиеся в горохе, фасоли или картофеле. Ингибиторы трипсина - это небольшие глобулярные белки, которые подавляют действие пищеварительных ферментов человека трипсина и химотрипсина, необходимых для расщепления пищевых белков. Если они присутствуют в пищевых продуктах, они могут снизить пищевую ценность пищи, и в исследованиях на животных было показано, что в высоких дозах они токсичны, а некоторые исследования на людях показали аналогичные результаты.Продолжительное кипячение также уничтожает вредные лектины, содержащиеся в бобовых, таких как красная фасоль. Лектины заставляют красные кровяные тельца слипаться и, если они не разлагаются до употребления, вызывают тяжелый гастроэнтерит, тошноту и рвоту.

    3.4 Сохранение, удобство и выбор

    Пищевая промышленность позволяет продлить срок хранения пищевых продуктов (например, скоропортящихся продуктов, таких как мясо, молоко и продукты из них). Применение упаковки в модифицированной атмосфере означает, что фрукты и овощи могут храниться дома дольше, что означает меньшую частоту покупок свежих продуктов и меньшую потерю порчи.Продуманное хранение и упаковка обеспечивают удобство для потребителя.

    Пищевая промышленность позволяет нам наслаждаться разнообразным питанием, которое соответствует быстрым темпам и нагрузкам нашего современного общества. Люди все чаще ездят на отдых за границу, поэтому они могут познакомиться с более широким выбором вкусов и стилей продуктов. Люди также меняют то, как они проводят время, и многие предпочитают не готовить еду с нуля. Поэтому, чтобы оправдать ожидания потребителей, производители производят изысканные продукты ресторанного качества или из далеких стран, чтобы готовить и наслаждаться ими у себя дома.

    В западном мире наши продукты питания преимущественно основаны на пяти основных культурах - рисе, пшенице, кукурузе, овсе и картофеле. Множество характеристик, к которым мы привыкли в наших продуктах, основаны на этих пяти простых основных продуктах в сочетании с современными технологиями обработки пищевых продуктов. Таким образом, можно сказать, что сегодня мы привыкли к разнообразным продуктам питания, приготовленным из узкого ряда видов растений, которые обеспечивают наше питание. Такое преобразование основных продуктов питания в обработанные продукты было бы невозможно без современных пищевых технологий.

    3.5 Уменьшение неравенства и проблем в отношении здоровья

    Признано, что люди с низким доходом имеют менее разнообразный рацион, что отражается в более низком потреблении питательных веществ и более низком питательном статусе. Обработка, такая как обогащение некоторых продуктов, таких как мука, хлеб и сухие завтраки, уменьшила количество людей в Европе с низким уровнем питательных веществ. Кроме того, сохранение питательных веществ с помощью таких процессов, как замораживание, позволяет тем, у кого нет доступа к такому широкому спектру продуктов, получить лучшее питание из более узкого диапазона доступных им продуктов.

    Хронические заболевания, такие как болезни сердца, ожирение и диабет, можно частично лечить с помощью диетических стратегий. В ответ на это производители применили методы обработки пищевых продуктов, чтобы предложить потребителям выбор многих продуктов и блюд с низким или обезжиренным содержанием жира. Возможно, самым простым примером этого является производство полужирного молока (также известного как «обезжиренное» или «полужирное»), при котором жир удаляется из продукта во время обработки - сливки снимаются с верхней части молока. после стадии центрифугирования.Жиры в пище также можно уменьшить, добавив воду или другие ингредиенты, чтобы заменить часть жира и снизить энергетическую плотность. Маргарины с пониженным содержанием жира - хороший тому пример. Добавление воды действительно приводит к получению более скоропортящегося продукта, и, следовательно, продукты с пониженным содержанием жира могут содержать дополнительные стабилизаторы и консерванты для восстановления их первоначального срока хранения и стабильности. Помимо продуктов с низким содержанием жира, пищевая промышленность теперь позволяет производить версии многих продуктов с низким содержанием соли, сахара и высоким содержанием клетчатки, что позволяет потребителям выбирать продукты, соответствующие их индивидуальным потребностям в отношении здоровья.

    4. Различные методы обработки

    4,1 Традиционный

    4.1.1 Обогрев

    Температура пищи повышается до уровня, который подавляет рост бактерий, инактивирует ферменты или даже уничтожает жизнеспособные бактерии. Традиционные методы влажного приготовления включают бланширование, кипячение, приготовление на пару и приготовление под давлением. К сухим методам приготовления относятся запекание, жарка и запекание. В более новых технологиях тепло применяется с помощью электромагнитного излучения, например микроволн.

    Техника сверхвысоких температур (УВТ) широко используется в пищевой промышленности.Это включает нагревание пищи до ≥135 ° C в течение не менее 1 секунды с последующим быстрым охлаждением для уничтожения всех микроорганизмов.

    Пастеризация - это когда пища нагревается минимум до 72 ° C в течение не менее 15 секунд для уничтожения большинства патогенов пищевого происхождения, а затем быстро охлаждается до 5 ° C.

    4.1.2 Охлаждение

    Температура пищи снижается, чтобы замедлить ее порчу, либо из-за задержки роста бактерий, либо из-за инактивации ферментов с разрушительными эффектами.Традиционные методы охлаждения включают охлаждение при температуре около 5 ° C и замораживание, при котором температура снижается до ниже -18 ° C (даже до -196 ° C в коммерческих морозильных камерах). Чем ниже температура, тем дольше можно безопасно хранить продукты. Однако резкие перепады температуры в течение продолжительных периодов времени могут привести к потере питательных веществ и разрушению целостных структур пищевых продуктов, в результате чего природа и питательная ценность этих продуктов питания значительно снизятся.

    4.1.3 Сушка

    При сушке содержание воды в растительной пище снижается до уровня, при котором биологические реакции (такие как активность ферментов и рост микробов) подавляются, и, таким образом, снижается вероятность порчи пищи. Сушка может осуществляться в форме сублимационной сушки (например, трав и кофе), распылительной сушки (например, сухого молока), сушки на солнце (например, томатов, абрикосов) или туннельной сушки (например, кусочков овощей).

    4.1.4 Соление

    Добавление соли в пищу веками использовалось как метод сохранения пищи.Этот метод основан на предположении, что соль снижает активность воды в консервируемых продуктах, что предотвращает рост организмов, вызывающих порчу. В зависимости от типа пищи аналогичный эффект может быть достигнут с сахаром. Также возможно замедлить или остановить рост и убить определенные микроорганизмы, изменив pH пищи (например, добавив кислоты, такие как уксус, при мариновании).

    Есть разные способы добавления соли в пищу, но обычно термин «соление» относится к консервированию пищи с помощью сухой соли.Соление в основном используется для консервирования мяса и рыбы. Соль можно добавлять как таковую или втирать в мясо. Соленая рыба (сушеная и соленая треска) и соленое мясо, такое как итальянский прошутто крудо, являются примерами соленых продуктов. Другие методы обработки пищевых продуктов, в которых играет роль соль, - это засолка и маринование.

    При рассоле пищу помещают в рассол, насыщенный водой или почти насыщенный солью, метод, который был обычным способом консервирования мяса, рыбы и овощей. Сегодня засаливание продуктов в маринаде - менее подходящий метод консервирования, но он все еще используется для созревания сыров, таких как фета и халлуми.

    Маринование часто подразумевает соление или рассол в сочетании с ферментацией или добавлением уксуса и в основном используется для консервирования овощей (например, квашеной капусты, огурцов, перца, лука и оливок) и рыбы (например, сельди).

    Посолка - это обычное название методов обработки пищевых продуктов, в основном используемых для рыбы и мяса, в которых сочетаются соль и сахар, а также иногда нитраты или нитриты (которые предотвращают рост вредных бактерий Clostridium botulinum и придают мясу привлекательный розовый цвет. ) добавляются в пищу.При посолке пищу иногда также коптят.

    4.1.5 Ферментация

    При брожении используются определенные дрожжи или бактерии, чтобы придать пище желаемый вкус и текстуру, но это также способ изменить биохимические характеристики пищевых продуктов и тем самым предотвратить рост микроорганизмов, вызывающих порчу.

    Дрожжевое брожение используется в таких процессах, как выпечка хлеба и производство алкогольных напитков. Точно так же соевый соус является результатом дрожжевого брожения.

    В аэробных условиях, то есть при наличии кислорода, дрожжи превращают сахара и другие углеводы в диоксид углерода и воду. Это то, что делает тесто заквашенным; дрожжи выделяют углекислый газ, который образует пузырьки газа в тесте и заставляет его расширяться. При выпекании губчатая структура закрепляется за счет тепла, и хлеб приобретает мягкую текстуру. Дрожжи погибают от тепла.

    При производстве пива, вина и других алкогольных напитков роль дрожжей заключается в образовании алкоголя и частично в газировании напитка.В анаэробных (бескислородных) условиях дрожжи превращают сахар или другие углеводы в спирт (этанол) и диоксид углерода. Если углекислый газ не удалить, напиток станет шипучим. При производстве алкогольных напитков обычно добавляют определенные дрожжевые культуры, но в определенных производственных процессах напиток подвергается самопроизвольной ферментации, что означает, что ферментация осуществляется дрожжами и другими микроорганизмами, которые естественным образом встречаются на винограде или в производственной среде.При выпечке этанол образуется как побочный продукт. Процесс ферментации меняется с аэробного на анаэробный во время закваски, так как кислород потребляется дрожжами. Однако во время выпечки спирт испаряется, поэтому хлеб не содержит спирта. Ферментация имеет большое значение для вкуса пива, вина и т. Д., Поскольку дрожжи, помимо этанола и углекислого газа, производят ряд других соединений, которые придают этим напиткам их специфические ароматические характеристики.

    Другой тип ферментации, используемый в производстве пищевых продуктов, осуществляется бактериями, продуцирующими молочную кислоту, которые естественным образом присутствуют в пищевых продуктах или добавляются в процессе производства.Бактерии используют лактозу (молочный сахар) или другие углеводы в качестве субстрата для производства молочной кислоты. По мере увеличения содержания молочной кислоты pH снижается, и это может влиять на характеристики пищи, поскольку некоторые белки чувствительны к кислотности. Например, кислая среда коагулирует казеин, белок, содержащийся в молоке, который делает молоко густым и придает йогурту и другим кислым молочным продуктам их особую консистенцию. Не все кисломолочные продукты подвергаются брожению; молочная кислота как таковая также может быть добавлена ​​в молоко.Среди других пищевых продуктов, ферментированных бактериями, продуцирующими молочную кислоту, - квашеная капуста, соленые огурцы, хлеб на закваске и мясные продукты, такие как салями.

    Как упоминалось выше, ферментация повышает стойкость и безопасность пищевых продуктов. Как алкоголь, так и кислотность, а также присутствие безвредных (или полезных) микроорганизмов предотвращают рост разрушающих и вредных бактерий, грибков и т. Д. Спирт является широко используемым дезинфицирующим средством и играет ту же роль, когда присутствует в напитках; он может убивать и препятствовать размножению микроорганизмов.Кислая среда также тормозит рост микробов. В обоих случаях эффективность зависит от уровня алкоголя и кислоты. Безвредные микроорганизмы в пище также влияют на количество нежелательных микробов и скорость их распространения, поскольку конкуренция за субстраты (питательные вещества) возрастает с увеличением количества присутствующих микроорганизмов.

    Помимо вкуса и текстуры, прочности и безопасности пищевых продуктов, ферментация может повысить пищевую ценность пищевых продуктов. Микроорганизмы действительно производят аминокислоты, жирные кислоты и некоторые витамины, которые усваиваются и используются, когда мы едим пищу.Микробная активность может также снизить содержание антинутриентов, веществ, присутствующих в определенных пищевых продуктах (например, бобовых, злаках, овощах), которые препятствуют усвоению питательных веществ. Уменьшение содержания таких компонентов улучшает усвоение питательных веществ из пищи и тем самым увеличивает ее пищевую ценность. Одним из примеров является закваска, которая содержит молочнокислые бактерии, способные выводить фитаты. Фитат - это антинутриент, присутствующий в цельнозерновой муке, который, благодаря своей способности образовывать комплексы с минералами, может препятствовать всасыванию в кишечнике основных питательных веществ, таких как кальций, железо, цинк и магний.Таким образом, биодоступность минералов в хлебе на закваске выше, чем в хлебе, приготовленном только на дрожжах.

    4.1.6 Пищевые добавки

    Пищевые добавки - это вещества, которые добавляют в пищевые продукты для определенных технических целей и сгруппированы в зависимости от функции, которую они выполняют при добавлении в пищевые продукты, например консерванты, антиоксиданты, стабилизаторы, вещества против слеживания или упаковочные газы. Только вещества, которые обычно не употребляются в пищу сами по себе и которые обычно не используются в качестве характерных ингредиентов пищи, квалифицируются как добавки.

    С увеличением использования пищевых продуктов в нашей пищевой цепи с 19 века, количество используемых добавок увеличилось. Добавки могут быть натуральными, идентичными натуральным или искусственными. Все пищевые добавки в обработанных пищевых продуктах должны быть одобрены национальным регулирующим органом, отвечающим за безопасность пищевых продуктов в каждой стране. На количество и типы добавок в пищевых продуктах устанавливаются строгие ограничения, и любая добавка должна быть включена в список ингредиентов на упаковке продуктов. В Европе одобренным добавкам присваивается префикс «E» для Европы, т.е.грамм. E330 - лимонная кислота, подкисляющая. Лимонная кислота была впервые выделена в 1784 году шведским химиком Карлом Вильгельмом Шееле, который кристаллизовал ее из лимонного сока.

    4.2 Преимущества новых технологий

    Многие традиционные методы консервирования приводят к неизбежным потерям в содержании питательных веществ и могут отрицательно сказаться на характере и качестве продукта после обработки. Новые технологии, часто называемые «минимальными процессами», нацелены на производство безопасных пищевых продуктов с более высокими питательными качествами, лучшими органолептическими и сохраняющимися качествами.Каждый новый процесс проходит длительные испытания, чтобы полностью оценить влияние на пищевую ценность.

    4.2.1 Приготовление в микроволновой печи

    Микроволновая обработка - это нагрев излучением в отличие от более традиционных методов конвекции или теплопроводности. Микроволны эффективно передаются в воде, но не в пластике или стекле, и отражаются металлами. Именно колебания молекул воды в пище приводят к ее нагреванию. Поскольку вода обычно распределяется в пище неравномерно, для правильного нагрева и безопасного обращения с продуктами необходимо время от времени помешивать.Приготовление пищи в микроволновой печи - это быстрый метод нагрева, который требует небольшого добавления воды и, следовательно, приводит к меньшим потерям питательных веществ, чем другие формы приготовления.

    4.2.2 Подготовка / хранение / упаковка в модифицированной атмосфере

    MAP можно определить как «помещение пищевых продуктов в газонепроницаемые материалы, в которых газовая среда была изменена». Он относится к контролируемым изменениям атмосферы, в которой готовятся, упаковываются или хранятся пищевые продукты, которые вместе подавляют рост бактерий.Обычно в качестве газов используются кислород, диоксид углерода и азот. MAP может представлять собой вакуумную упаковку или введение газа во время упаковки. Совсем недавно MAP превратился в активную упаковку, в которой атмосфера постоянно меняется в течение срока годности продукта. Например, можно использовать поглотители кислорода или пленки, выделяющие диоксид углерода. Снижение уровня кислорода и повышение уровня углекислого газа приводят к подавлению роста микробов.

    Мясо, рыба и сыр являются примерами так называемых недыхающих продуктов, которым нужны пленки с очень низкой газопроницаемостью для поддержания исходной газовой смеси внутри упаковки.С другой стороны, взаимодействие упаковочного материала с продуктом важно для вдыхания продуктов, таких как фрукты и овощи. Можно адаптировать газопроницаемость упаковочной пленки к дыханию продуктов, так что в упаковке установится равновесие газовой смеси и увеличится срок хранения продукта.

    4.2.3 Облучение

    Обработка ионизирующим излучением - это особый вид передачи энергии, при котором часть энергии, передаваемой за обработку, достаточно высока, чтобы вызвать ионизацию.Он используется для контроля и нарушения биологических процессов с целью продления срока хранения свежих продуктов, а также может применяться для стерилизации упаковочных материалов. Благоприятные биологические эффекты облучения включают подавление прорастания, задержку созревания и дезинсекцию насекомых. Микробиологически облучение подавляет патогенные и другие микроорганизмы, вызывающие порчу. Основное преимущество облучения заключается в том, что оно проходит через пищу, убивает микроорганизмы, но поскольку оно не нагревает пищу, оно оказывает незначительное влияние на состав питания.Белки и углеводы могут до некоторой степени расщепляться, но на их пищевую ценность это мало влияет.

    В соответствии с европейским законом о пищевых продуктах (1999/2 / EC и 1999/3 / EC) обработка ионизирующим излучением определенного продукта питания может быть разрешена только в том случае, если:

    • есть разумная технологическая потребность
    • не представляет опасности для здоровья
    • приносит пользу потребителям или
    • он не используется в качестве замены гигиенических и гигиенических практик, надлежащей производственной или сельскохозяйственной практики.

    В соответствии с европейским законодательством, любой пищевой продукт, облученный как таковой или содержащий облученные пищевые ингредиенты, должен четко указывать это на этикетке.

    4.2.4 Омический нагрев

    Это тепловой процесс, при котором тепло вырабатывается внутри за счет прохождения через пищу переменного электрического тока, который действует как электрическое сопротивление. Омический нагрев также известен как «резистивный нагрев» или «прямой резистивный нагрев». Он не зависит от передачи энергии частицами воды, поэтому это важная разработка для эффективного нагрева продуктов с низким содержанием воды и твердых частиц.Это кратковременный высокотемпературный метод (HTST), который снижает вероятность высокотемпературной чрезмерной обработки и связанной с этим потери питательных веществ. Еще одно преимущество омического нагрева заключается в том, что он сохраняет деликатно структурированные продукты, такие как клубника.

    4.2.5 Сверхвысокое давление

    Технология высокого давления подвергает пищевые продукты воздействию давления 100–1000 МПа обычно в течение 5–20 минут. Он имеет ряд ключевых атрибутов, включая инактивацию микроорганизмов, модификацию биополимеров, например образование геля, и сохранение качества, например цвета, вкуса и питательных веществ.Это связано с его уникальной способностью напрямую влиять на нековалентные связи (такие как водородные, ионные и гидрофобные связи), оставляя ковалентные связи неповрежденными, и то и другое без использования тепла. Как следствие, он дает возможность удерживать витамины, пигменты и вкусовые компоненты, инактивируя микроорганизмы или ферменты, которые в противном случае могли бы отрицательно повлиять на функциональность пищевых продуктов из-за их порчи.

    4.2.6 Световые импульсы

    В этом методе используются прерывистые вспышки белого света (20% УФ, 50% видимого и 30% инфракрасного) с интенсивностью, которая, как утверждается, в 20 000 раз превышает интенсивность солнечного света у поверхности земли.Типичная частота импульсов - от одной до двадцати вспышек в секунду, которые приводят к значительному сокращению количества микроорганизмов на поверхности при использовании на мясе, рыбе и хлебобулочных изделиях. Этот метод идеально подходит для обеззараживания поверхности упаковочных материалов и лучше всего работает на гладких, чистых от пыли поверхностях.

    4.2.7 Импульсные электрические поля (ИЭП)

    Этот процесс включает приложение повторяющихся коротких импульсов электрического поля высокого напряжения (10–50 кВ / см) к перекачиваемой жидкости, протекающей между двумя электродами.Он не использует электричество для выработки тепла, а вместо этого инактивирует микроорганизмы, разрушая стенки и мембраны клеток, подвергающихся воздействию импульсов высокого напряжения. PEF в основном используется в охлаждаемых продуктах или в продуктах, хранящихся в окружающей среде, и, поскольку он применяется в течение одной секунды или меньше, он не приводит к нагреванию продукта. По этой причине он имеет преимущества в питании по сравнению с более традиционными тепловыми процессами, которые разрушают чувствительные к теплу питательные вещества.

    5. Влияние обработки на пищевую ценность

    Обработка пищевых продуктов может привести к улучшению или ухудшению питательной ценности пищевых продуктов.Простые процессы приготовления пищи на домашней кухне приводят к неизбежному повреждению клеток растительной пищи, что приводит к вымыванию необходимых витаминов и минералов. Однако, если мы будем осторожны в обработке продуктов и выберем разнообразные обработанные продукты, они могут сыграть важную роль в питательной и сбалансированной диете. В отличие от домашней среды, производители продуктов питания имеют доступ к промышленным масштабам, быстрым методам обработки, которые вызывают минимальные потери питательных веществ, и они используют процессы, которые действительно помогают высвобождать положительные питательные вещества (например, ликопин при приготовлении помидоров) или устранять вызывающие озабоченность соединения (например, лектины). в бобовых).

    5.1 Витамины и минералы

    Есть 13 витаминов, которые необходимы организму в небольших количествах, но тем не менее необходимы. Четыре из них жирорастворимы (A, D, E и K), а остальные девять растворимы в воде (витамины группы C, B). Ни одна пища не содержит всех витаминов, поэтому для адекватного потребления необходима сбалансированная и разнообразная диета. Обработка по-разному влияет на разные витамины. Например, водорастворимые витамины, как правило, более чувствительны к обработке и часто частично теряются при кипячении и термообработке.Однако более новые «нетепловые» процессы, такие как омический нагрев или обработка сверхвысоким давлением, могут помочь сохранить витамины, поскольку они подвергают пищу воздействию более низких температур (если таковые имеются), и эти процессы происходят в течение очень короткого времени. В некоторых случаях обработанные продукты содержат больше витаминов, чем свежие. Например, замороженные овощи, собранные и замороженные в течение нескольких часов, сохраняют больше витамина С, чем их свежие аналоги, потому что при хранении в охлажденном виде со временем теряется больше витамина С, чем при хранении в замороженном виде.

    Минералы - это неорганические элементы, в которых наш организм нуждается в небольших количествах, обычно получаемых в достаточном количестве при употреблении обычной смешанной диеты. Обработка пищевых продуктов может иметь важное положительное влияние на доступность минералов из продуктов. Например, фитаты в цельнозерновых злаках ингибируют всасывание железа и цинка, но во время ферментации высвобождаются ферменты, которые разрушают фитаты и увеличивают доступность железа и цинка в тесте.

    В качестве меры общественного здравоохранения в настоящее время различные продукты питания обогащены витаминами и минералами.Готовые к употреблению хлопья для завтрака часто содержат железо, и оно стало одним из основных источников железа в рационе молодых женщин, потому что их потребление красного мяса снизилось (красное мясо имеет естественный высокий уровень легко усваиваемого железа). Дефицит железа - одна из самых серьезных проблем, связанных с дефицитом питательных веществ в Европе, от которой страдают до 30% молодых женщин. В некоторых странах каши для завтрака и мука обогащены фолиевой кислотой как средство повышения фолиевой кислоты у женщин детородного возраста.Это связано с признанием того, что низкий уровень фолиевой кислоты во время беременности связан с повышенным риском дефектов нервной трубки (например, расщелины позвоночника) у будущих детей.

    5.2 Углеводы и клетчатка

    Для моно- и олигосахаридов незначительное разложение происходит при температурах вплоть до тех, которые используются при UHT-обработке, но есть несколько реакций, которые могут повлиять на качество питания. Например, некоторые сахара могут изменять свою молекулярную структуру во время нагревания, что может повлиять на усвояемость.Это может быть полезно для уменьшения присутствия неперевариваемых олигосахаридов (таких как стахиоза или рафиноза, присутствующих в бобовых и некоторых других продуктах), которые вызывают метеоризм при чрезмерном употреблении.

    В настоящее время проводятся обширные исследования по изучению влияния обработки на растворимость и усвояемость определенных волокон и крахмалов, таких как резистентный крахмал. Низкая усвояемость может быть преимуществом, поскольку было показано, что углеводы с медленным высвобождением могут снижать повышение уровня сахара в крови и инсулина, возникающее после еды.Избыточный уровень глюкозы в крови и инсулина был связан с развитием инсулинорезистентности, потенциально являющейся предшественником диабета II типа. Было показано, что экструзионная варка увеличивает «растворимость» волокна. Растворимые волокна, такие как β-глюкан, могут снижать уровень холестерина в сыворотке, что способствует снижению риска сердечно-сосудистых заболеваний.

    5,3 Жиры и белки

    Большинство жиров достаточно стабильны во время обработки. Однако ненасыщенные жирные кислоты склонны к окислению и прогорклости при хранении.Применение упаковки с модифицированной атмосферой, антиоксидантов и асептической упаковки может привести к значительному увеличению времени хранения, что снимает эти опасения.

    Белки обычно денатурируются при высоких температурах, что может оказывать пагубное воздействие на структуру пищи. Однако это может быть полезно с точки зрения питания, поскольку может означать повышение усвояемости белка. Новое захватывающее исследование также показывает, что новые методы обработки пищевых продуктов, такие как высокое давление, приложение электрического поля или облучение, могут оказывать влияние на пищевые аллергены.Уничтожение антипитательных белков, таких как авидин, в сырых яйцах является преимуществом во время обработки, поскольку оно позволяет абсорбировать иначе связанные питательные вещества. Авидин прочно связывается с биотином сырых яиц и тем самым блокирует абсорбцию этого витамина B, но связь освобождается, когда авидин денатурируется при нагревании.

    6. Почему обработанные пищевые продукты так важны для современного общества?

    В настоящее время трудно придерживаться диеты, основанной только на свежих, необработанных продуктах.Основная часть потребностей нашей семьи в продуктах питания поступает из обработанных пищевых продуктов, которые добавляют разнообразия нашему рациону и делают нашу напряженную жизнь удобнее. Обработанные пищевые продукты позволяют потребителям реже совершать покупки и запасаться широким ассортиментом продуктов, на основе которых можно приготовить разнообразные и питательные блюда.

    Многие обработанные пищевые продукты столь же питательны, а в некоторых случаях даже более питательны, чем свежие или приготовленные в домашних условиях продукты, в зависимости от способа их обработки. Например, уровни фолиевой кислоты и тиамина в бобах лучше переносят процесс консервирования, чем длительное замачивание и приготовление, необходимые для домашнего приготовления из сушеных бобов.Замороженные овощи обычно перерабатываются в течение нескольких часов после сбора урожая. В процессе замораживания потери питательных веществ незначительны, поэтому замороженные овощи сохраняют высокое содержание витаминов и минералов. Напротив, свежие овощи собирают и отправляют на рынок. Могут пройти дни или даже недели, прежде чем они дойдут до обеденного стола, и витамины постепенно теряются с течением времени, независимо от того, насколько аккуратно овощи транспортируются и хранятся. Рыбные консервы - хороший источник кальция, потому что рыбу часто консервируют без костей, а обработка делает мелкие кости более мягкими и съедобными.

    Включение широкого спектра пищевых продуктов, будь то свежие, замороженные, консервированные или обработанные иным образом, позволяет потребителям достичь рекомендуемого суточного потребления. Например, консервированные фрукты, фруктовые соки и смузи, а также замороженные овощи засчитываются в популярную цель «5 порций фруктов и овощей в день». Ключевым моментом для потребителей является сбалансированность и разнообразие: ни один продукт питания не обеспечивает достаточного количества питательных веществ для выживания, и каждый метод обработки влияет на питательные вещества по-разному.

    7.Факты о пищевой промышленности

    • Люди веками перерабатывали продукты питания, сохраняя их для будущего использования и обеспечения их безопасности.
    • Пищевая промышленность позволяет продлить срок хранения скоропортящихся пищевых продуктов, тем самым расширяя выбор и уменьшая зависимость от сезонности.
    • Потери при хранении свежих пищевых продуктов обычно больше, чем потери, связанные с обработкой пищевых продуктов, и обработка пищевых продуктов может повысить питательную ценность некоторых пищевых продуктов.
    • Добавление питательных веществ в пищевые продукты и напитки используется во всем мире в качестве меры общественного здравоохранения и является экономически эффективным средством обеспечения питательного качества пищевых продуктов.
    • Консервированные, свежие и замороженные фрукты и овощи содержат питательные вещества, необходимые для здорового питания. Употребление исключительно свежих фруктов и овощей игнорирует питательную ценность обработанных пищевых продуктов, которые включают как промышленные, так и пищевые продукты, обработанные в домашних условиях.

    Ссылки и дополнительная литература

    Генри CJK и Чепмен К.(2002). Справочник по питанию для кухонных комбайнов. Woodhead Publishing Ltd.

    Международный совет по продовольственной информации (2009 г.). От фермы до вилки: вопросы и ответы о современном производстве продуктов питания.

    MacEvilly C и Peltola K (2003). Влияние агрономии, хранения, обработки и приготовления пищи на биологически активные вещества в продуктах питания. В растениях, диете и здоровье Под ред. Гейл Голдберг. Издательство Blackwell Science Publishing.

    Mills EN, et al. (2009). Влияние обработки пищевых продуктов на структурные и аллергенные свойства пищевых аллергенов.Молекулярное питание и исследования пищевых продуктов 53 (8): 963-969.

    БНФ (1999). Питание и пищевая промышленность. Информационный документ Британского фонда питания.

    Paschke A (2009). Аспекты обработки пищевых продуктов и их влияние на структуру аллергенов. Молекулярное питание и исследования пищевых продуктов 53 (8): 959-962.

    .

    Смотрите также