• Регуляторная функция липидов это


    Функции липидов и их характеристика

    Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

    Какие функции выполняют липиды

    Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

    1. резервно-энергетическая;
    2. структурообразующая;
    3. транспортная;
    4. изолирующая;
    5. сигнальная.

    К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

    Энергетический запас организма

    Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля. Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов. Их запас позволяет клетке участвовать в энергозависимых реакциях.

    Структурные блоки

    Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

    1. холестерин – липофильный спирт;
    2. гликолипиды – соединения липидов с углеводами;
    3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

    Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности. Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов. Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

    Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

    Автономная система отопления

    Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри. Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани. Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

    «Золотой» запас индивидуума

    Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

    Такси заказывали?

    Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины. Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола. В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

    Второстепенные факторы

    Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

    • ферментативная;
    • сигнальная;
    • регуляторная

    Сигнальная функция

    Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

    Ферментативная функция

    Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

    Регуляторная функция

    Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

    Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

    sosudportal.ru

    Функции липидов:

    Липиды принимают участие в выполнении следующий функций:

    1. Структурная или пластическая роль липидов состоит в том, что они входят в состав структурных компонентов клетки (фосфо- и гликолипиды), ядра, цитоплазмы, мембраны и в значительной степени определяют их свойства (в нервной ткани содержится до 25% , в клеточных мембранах до 40% жиров).

    2. Энергетическая функция – обеспечивает 25—30% всей энергии необходимой организму (при расщеплении 1г жира образуется 38,9 кДж.). У взрослой женщины доля жировой ткани в организме составляет в среднем 20—25% массы тела, что почти вдовое больше, чем у мужчины (соответственно 12— 14%). Следует полагать, что жир выполняет в женском организме еще и специфические функции. В частности, жировая ткань обеспечивает женщине резерв энергии, необходимый для вынашивания плода и грудного вскармливания.

    3. Жиры являются источником образования эндогенной воды. При окислении 100 г жира выделяется 107 мл Н2О.

    4. Функция запасания питательных веществ (жировое депо). Жиры являются своего рода «энергетическими консервами».

    5.Защитная. Жиры защищают органы от повреждений (подушка около глаз, околопочечная капсула).

    6. Выполняют транспортную функцию – носители жирорастворимых витаминов.

    7. Терморегуляционная. Жиры предохраняют организм от потери тепла.

    8. Жиры являются источником синтеза стероидных гормонов.

    9. Участвуют в синтезе тромбопластина и миелина нервной ткани, желчных кислот, простагландинов и витамина D.

    10. Существуют данные о том, что часть мужских половых стероидных гормонов в жировой ткани преобразуется в женские гормоны, что является основой косвенного участия жировой ткани в гуморальной регуляции функций организма.

    Метаболизм жиров в организме.

    Нейтральные жиры являются важнейшим источником энергии. За счет окисления образуется 50% всей энергии необходимой организму. Нейтральные жиры, составляющие основную массу животной пищи и липидов организма (10—20% массы тела), являются источником эндо­генной воды. Физиологическое депонирование нейтральных жиров выполняют липоциты, накапливая их в подкожной жировой клетчатке, сальнике, жировых капсулах различных органов – увеличиваясь в объеме. Считают, что количество жировых клеток закладывается в детском возрасте и в дальнейшем может лишь увеличиваться в размерах. Жиры, депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы – от механических повреждений. Жир может депонироваться в печени и мышцах. Количество жира отложенного в депо зависит от характера питания, особенностей конституции, пола, возраста, вида деятельности, образа жизни и т.д.

    Фосфо- и гликолипиды входят в состав всех клеток (клеточные липиды), особенно нервных. Этот вид жиров – непременный компонент биологических мембран. Фосфолипиды синтезируются в печени и в кишечной стенке, однако только гепатоциты способны выделять их в кровь. Поэтому печень является единственным органом, определяющим уровень фосфолипидов крови.

    Бурый жир представлен особой жировой тканью, располагающейся у новорожденных и грудных детей в области шеи и верхней части спины (его количество в организме 1—2% от общей массы тела). В небольшом количестве (0,1—0,2% от общей массы тела) бурый жир имеется и у взрослого человека. Особенностью состава бурого жира является огромное количество митохондрий с красновато-бурыми пигментами в которых происходят интенсивные процессы окисления, не сопряженные с образованием АТФ. Важнейшую роль в механизмах этого явления играет белок термогенин, составляющий 10—15% общего белка митохондрий бурого жира. Продукция тепла бурым жиром (на единицу массы его ткани) в 20 и более раз превышает таковую обычной жировой ткани.

    У новорожденных низкая функциональная активность организма и незрелость центральных и периферических механизмов терморегуляции не обеспечивают достаточную теплопродукцию, поэтому функцию дополнительного специфического генератора тепла выполняет бурый жир. У взрослых же необходимость в дополнительном источнике тепла отпадает, так как теплопродукция обеспечивается иными, более совершенными, механизмами.

    Следует отметить, что бурый жир является также источником эндогенной воды.

    Высшие жирные кислоты являются основным продуктом гидролиза липидов в кишечнике. Всасывание их в кровь происходит в виде мицелярных комплексов, состоящих из жирных и желчных кислот, фосфолипидов и холестерола.

    Для нормальной жизнедеятельности необходимо присутствие в пище незаменимых жирных кислот, которые не синтезируются в организме. К таким кислотам относятся олеиновая, линолевая, линоленовая и арахидоновая. Суточная потребность в них составляет 10—12 г. Линолевая и линоленовая кислоты содержатся в основном в растительных жирах, арахидоновая – только в животных. Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи. Полиненасыщенные жирные кислоты необходимы для построения и сохранения липопротеидных клеточных мембран, для синтеза простагландинов и половых гормонов.

    Жиры могут образовываться в организме из углеводов и белков при их избыточном поступлении извне. Значительное количество жиров человек получает с колбасами – от 20—40%, салом – 90% , сливочным маслом – 72—82% , сырами – 15—50%, сметаной – 20—30%.

    В среднем человеку требуется 70—125 г жира в сутки, из которого 70% животного, а 30% растительного. Лишний жир откладывается в организме в определенных частях тела в виде жирового депо.

    Холестерол относится к классу стеринов, включающему также стероидные гормоны, витамин D и желчные кислоты. Холестерол, поступает в организм с пищей и синтезируется в самом организме. При этом значительная его часть синтезируется в печени, где происходит и его расщепление на желчные кислоты, выделяемых в составе желчи в кишечник. Транспорт холестерола в крови осуществляется в составе липопротеидов высокой, низкой и очень низкой плотности.

    Повышение фракции липопротеидов низкой плотности несет опасность развития атеросклероза вследствие их накопления в сосудистой стенке. Липопротеиды высокой плотности, напротив, способствуют удалению холестерола из клеток,

    Суммарное количество жиров в организме человека составляет 10—20% массы тела. Увеличение массы тела на 20—25% считается предельно допустимой физиологической границей. Более чем у 30% населения экономически развитых стран масса тела превышает нормальные показатели.

    studfiles.net

    Что такое липиды и их функции

    Жироподобные вещества липиды это составляющие, принимающие участие в жизненно важных процессах в организме человека. Есть несколько групп, которые выполняют ведущие функции организма, такие как формирование гормонального фона или обмен веществ. В этой статье подробно расскажем, что это такое и какова роль в процессах жизнедеятельности.

    Липиды и их значения

    Липиды это органические соединение, куда входят жиры и другие жироподобные вещества. Они активно участвуют в процессе строения клеток и являются частью мембран. Влияют на пропускную способность клеточных мембран, а также на ферментную активность. Влияют на создание межклеточных связей и на разнообразные химические процессы в организме. Нерастворимы в воде, но они растворяются в растворителях органического происхождения (например, бензин или хлороформ). Кроме того, есть виды, которые растворяются в жирах.

    Это вещество может быть растительного либо животного происхождения. Если речь о растениях, то больше всего их в орехах и семечках. Животного происхождения в основном расположены в подкожной ткани, нервной и мозговой.

    Классификация липидов

    Липиды присутствуют практически во всех тканях организма и в крови. Существует несколько классификаций ниже приводим наиболее распространённую, основанную на особенностях структуры и состава. По строению они подразделяются на 3 большие группы, которые подразделяются на меньшие.

    Первая группа — простые. Они включают в состав кислород, водород и углерод. Делятся на такие виды:

    1. Жирные спирты. Вещества, включающие от 1 до 3 гидроксильных групп.
    2. Жирные кислоты. Находятся в разных маслах и жирах.
    3. Жирные альдегиды. В составе молекулы содержится 12 атомов углерода.
    4. Триглицериды. Это именно те жиры, которые находятся откладываются в подкожных тканях.
    5. Основания сфингозиновые. Располагаются в плазме, лёгких, печени и почках, встречаются в тканях нервных.
    6. Воски. Это эфиры жирных кислот и спиртов высокомолекулярных.
    7. Предельные углеводороды. Имеют исключительно одинарные связи, при этом атомы углерода в состоянии гибридизации.

    Вторая группа — сложные. Они, как и простые, включают в состав кислород, водород и углерод. Но, кроме них также содержат разные дополнительные компоненты. В свою очередь, они подразделяются на 2 подгруппы: полярные и нейтральные.

    К полярным относятся:

    1. Гликолипиды. Они появляются после соединения углеводов с липидами.
    2. Фосфолипиды. Это сложные эфиры жирных кислот, а также многоатомных спиртов.
    3. Сфинголипиды. Являются производными аминоспиртов алифатических.

    К нейтральным относятся:

    1. Ацилглицериды. Включают в себя моноглицериды и диглицериды.
    2. N-ацетилэтаноламиды. Являют собой этаноламиды жирных кислот.
    3. Церамиды. В них входят жирные кислоты в сочетании с сфингозином.
    4. Эфиры стеринов. Представляют сложные циклические спирты высокомолекулярные. Они содержат жирные кислоты.

    Третья группа — оксилипиды. Вещества появляются в результате оксегенирования полиненасыщенных жирных кислот. В свою очередь, подразделяются на 2 типа:

    1. Циклооксигеназного пути.
    2. Липоксигеназного пути.

    Значение для мембранных клеток

    Клеточная мембрана — то, что отделяет клетку от среды вокруг. Кроме защиты, она выполняет довольно большое количество необходимых для нормальной жизнедеятельности функций. Значение липидов в мембране невозможно переоценить.

    В клеточной стенке вещество формирует двойной слой. Это помогает клеткам нормально взаимодействовать с окружающей средой. Поэтому не возникает проблем с контролем и регулированием метаболизма. Липиды мембран поддерживают форму клетки.

    Часть бактериальной клетки

    Неотъемлемая часть строения клетки — липиды бактерий. Как правило, в составе воски либо фосфолипиды. А вот количество вещества непосредственно варьируется в пределах 5-40%. Зависит содержание от типа бактерии, например, в дифтерийной палочке содержится около 5%, а вот в туберкулёзном возбудителе уже более 30%.

    Бактериальная клетка отличается тем, что вещества в ней связаны с другими составляющими, например, белками или полисахаридами. В бактериях они имеют гораздо больше разновидностей и выполняют много задач:

    • аккумуляция энергии;
    • участвуют в метаболических процессах;
    • являются составляющей мембран;
    • от них зависит устойчивость клетки к кислотам;
    • компоненты антигенов.

    Какие функции выполняют в организме

    Липиды составная часть почти всех тканей человеческого организма. Встречаются разные подвиды, каждый из которых отвечает за какую-то определённую функцию. Далее подробнее остановимся на том, какое значение вещества для жизнедеятельности:

    1. Энергетическая функция. Имеют свойство распадаться и в процессе появляется много энергии. Она нужна клеткам организма, чтобы поддерживать такие процессы, как поступление воздуха, формирование веществ, рост и дыхание.
    2. Резервная функция. В организме жиры откладываются про запас, именно из них состоит жировая прослойка кожи. Если наступает голод, то организм задействует эти резервы.
    3. Функция теплоизоляции. Жировая прослойка плохо проводит тепло, а потому организм гораздо легче поддерживать температуру.
    4. Структурная функция. Это относится к клеточным мембранам, потому что вещество является их постоянным компонентом.
    5. Ферментативная функция. Одна из второстепенных функций. Они помогают клетками формировать ферменты и помогают с усвоением некоторых микроэлементов, поступающих извне.
    6. Транспортная функция. Побочная и заключается в способности некоторых видов липидов переносить вещества.
    7. Сигнальная функция. Тоже является второстепенной и просто поддерживает некоторые процессы организма.
    8. Регуляторная функция. Это ещё один механизм, который имеет побочное значение. Сами по себе они почти не участвуют в регулировании разных процессов, но являются компонентом веществ, прямо влияющих на них.

    Таким образом, можно с уверенностью утверждать, что функциональное значение липидов для организма переоценить сложно. Поэтому важно, чтобы их уровень всегда был в норме. Многие биологические и биохимические процессы в организме на них завязаны.

    Что такое липидный обмен

    Обмен липидов — это процессы физиологической или биохимической природы, которые происходят в клетках. Давайте остановимся на них подробнее:

    1. Обмен триациглицерола.
    2. Обмен фосфолипидов. Они распределяются неравномерно. Их много в печени и плазме (до 50%). Срок полупревращения 1-200 суток смотря какой вид.
    3. Обмен холестерола. Он образуется в печени и поступает с едой. Излишки выводятся естественным путём.
    4. Катаболизм жирных кислот. Происходит в ходе β-окисления, реже задействуются α-или ω-окисления.
    5. Входят в обменные процессы ЖКТ. А именно расщепление, переваривание и всасывание этих веществ, поступающих с едой. Переваривание начинается в желудке при помощи такого фермента, как липаза. Далее в кишечнике в действие вступает сок поджелудочной и жёлчь. Причиной появления сбоев может послужить нарушение секреции жёлчного пузыря или поджелудочной.
    6. Липогенез. Проще говоря — синтез жирных кислот. Происходит в печени или жировой ткани.
    7. Сюда входит транспортировка из кишечника разных жиров.
    8. Липолиз. Катаболизм, который происходит с участием липазы и провоцирует расщепление жиров.
    9. Синтез кетоновых тел. Ацетоацетил-КоА даёт начало их формированию.
    10. Взаимопревращение жирных кислот. Из жирных кислот, находящихся в печени, формируются кислоты, свойственные организму.

    Липиды это важное вещество, влияющие почти на все сферы жизнедеятельности. Наиболее распространены в рационе человека триглицериды и холестерин. Триглицериды — отличный источник энергии, именно этот тип формирует жировую прослойку тела. Холестерин же влияет на обменные процессы организма, а также формирование гормонального фона. Важно чтобы содержание всегда находилось в пределах нормы, не превышая и не занижая её. Взрослому человеку необходимо употреблять 70-140 г липидов.

    medkrovi.ru

    Липиды - это... Что такое Липиды?

    Липи́ды (от греч. λίπος, lípos — жир) — широкая группа органических соединений, включающая жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе.

    Используемое ранее определение липидов, как группы органических соединений, хорошо растворимых в неполярных органических растворителях (бензол, ацетон, хлороформ) и практически нерастворимых в воде, является слишком расплывчатым. Во-первых, такое определение вместо чёткой характеристики класса химических соединений говорит лишь о физических свойствах. Во-вторых, в настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной органической химии определение термина «липиды» основано на биосинтетическом родстве данных соединений — к липидам относят жирные кислоты и их производные[1]. В то же время в биохимии и других разделах биологии к липидам по-прежнему принято относить и гидрофобные или амфифильные вещества другой химической природы[2]. Это определение позволяет включать сюда холестерин, который вряд ли можно считать производным жирной кислоты.

    Суточная потребность взрослого человека в липидах — 70—140 граммов.

    Липиды — один из важнейших классов сложных молекул, присутствующих в клетках и тканях животных. Липиды выполняют самые разнообразные функции: снабжают энергией клеточные процессы, формируют клеточные мембраны, участвуют в межклеточной и внутриклеточной сигнализации. Липиды служат предшественниками стероидных гормонов, жёлчных кислот, простагландинов и фосфоинозитидов. В крови содержатся отдельные компоненты липидов (насыщенные жирные кислоты, мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты), триглицериды, холестерин, эфиры холестерина и фосфолипиды. Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов. Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином. Триглицериды, холестерин и фосфолипиды транспортируются в форме водорастворимых липопротеидов. Некоторые липиды используются для создания наночастиц, например, липосом. Мембрана липосом состоит из природных фосфолипидов, что определяет их многие привлекательные качества. Они нетоксичны, биодеградируемы, при определенных условиях могут поглощаться клетками, что приводит к внутриклеточной доставке их содержимого. Липосомы предназначены для целевой доставки в клетки препаратов фотодинамической или генной терапии, а также компонентов другого назначения, например, косметического[3].

    Классификация липидов

    Классификация липидов, как и других соединений биологической природы, — весьма спорный и проблематичный процесс. Предлагаемая ниже классификация, хоть и широко распространена в липидологии, является далеко не единственной. Она основывается, прежде всего, на структурных и биосинтетических особенностях разных групп липидов.

    Простые липиды

    Примеры жирных кислот: миристиновая (насыщенная жирная кислота) и миристолеиновая (мононенасыщенная кислота) имеют 14 атомов углерода.

    Сложные липиды

    Общее строение фосфолипидов Заместители R1 и R² — остатки жирных кислот, X зависит от типа фосфолипида.
    • Нейтральные
      • Ацилглицериды
        • Триглицериды (Жиры)
        • Диглицериды
        • Моноглицериды
      • Церамиды
      • Эфиры стеринов
      • N-ацетилэтаноламиды

    Оксилипиды

    • Оксилипиды липоксигеназного пути
    • Оксилипиды циклооксигеназного пути

    Строение

    Молекулы простых липидов состоят из спирта, жирных кислот, сложные — из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др. Строение липидов зависит в первую очередь от пути их биосинтеза. Для подробного ознакомления следует перейти по ссылкам, указанным в схеме классификации.

    Биологические функции

    Энергетическая (резервная) функция

    Многие жиры, в первую очередь триглицериды, используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г углеводов (4.1 ккал). Жировые отложения используются в качестве запасных источников питательных веществ, прежде всего животными, которые вынуждены носить свои запасы на себе. Растения чаще запасают углеводы, однако в семенах многих растений высоко содержание жиров (растительные масла добывают из семян подсолнечника, кукурузы, рапса, льна и других масличных растений).

    Функция теплоизоляции

    Жир — хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). Но в то же же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков), в качестве резервных запасов воды, так как вода — один из продуктов окисления жиров.

    Структурная функция

    Фосфолипиды составляют основу биослоя клеточных мембран, холестерин — регулятор текучести мембран. У архей в состав мембран входят производные изопреноидных углеводородов. Воски образуют кутикулу на поверхности надземных органов (листьев и молодых побегов) растений. Их также производят многие насекомые (так, пчёлы строят из них соты, а червецы и щитовки образуют защитные чехлы).

    Регуляторная

    Защитная (амортизационная)

    Толстый слой жира защищает внутренние органы многих животных от повреждений при ударах (например, сивучи при массе до тонны, могут прыгать в воду со скал высотой 20-25 м[источник не указан 77 дней]).

    Увеличения плавучести

    Самые разные организмы — от диатомовых водорослей до акул — используют резервные запасы жира как средство снижения среднего удельного веса тела и, таким образом, увеличения плавучести. Это позволяет снизить расходы энергии на удержание в толще воды.

    Литература

    На иностранных языках

    • Gunstone, F. D. Fatty acids and lipid chemistry. — London: Blackie Academic and Professional, 1996. 252 pp.
    • Chapter 12 in «Biochemistry» by Jeremy M. Berg, John L. Tymoczko and Lubert Stryer (2002) W. H. Freeman and Co.
    • Alberts, B., et al. (2004) «Essential Cell Biology, 2nd Edition.» Garland Science. ISBN 0-8153-3480-X
    • Solomon, Eldra P., et. al. (2005) «Biology, 7th Edition.» Thomson, Brooks/Cole.
    • «Advanced Biology — Principles and Applications.» C.J. Clegg and D.G. Mackean. ISBN 0-7195-7670-9
    • Georg Löffler, Petro E. Petrides: Biochemie und Pathobiochemie. Springer, Berlin 2003, ISBN 3-540-42295-1
    • Florian Horn, Isabelle Moc, Nadine Schneider: Biochemie des Menschen. Thieme, Stuttgart 2005, ISBN 3-13-130883-4
    • Charles E. Mortimer, Ulrich Müller: Chemie. Thieme, Stuttgart 2003, ISBN 3-13-484308-0
    • Fahy E. et al. A comprehensive classification system for lipids // J. Lipid. Res. 2005. V. 46, №5. P. 839–861.

    На русском языке

    • Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;
    • Маркман А. Л., Химия липидов, в. 1—2, Таш., 1963—70;
    • Тютюнников Б. Н., Химия жиров, М., 1966;
    • Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.

    См. также

    • Жирные кислоты
    • Жиры
    • Воски
    • Фосфолипиды
    • Липолиз

    Примечания

    dic.academic.ru

    Регуляторная функция липидов это

    Особенности разных классов липидов и их функция

    Особенности нахождения в организме

    Большинство образует водорастворимые липопротеины, которые состоят из какого-либо липида и апопротеина. Таким образом транспортируются холестерин и его эфиры, триглицериды и фосфолипиды. Некоторые из липидов принимают участие в формировании наночастиц – липосом.

    Классификация

    Вещества липидной природы удобно классифицировать по структурным особенностям. Выделяют простые и сложные. Эти классы липидов имеют огромные отличия.

    Простые отличаются тем, что содержат три стандартных химических элемента – это кислород, углерод и водород. К этой группе относятся жирные кислоты, спирты и альдегиды, а также воски и триглицериды.

    Чем отличается биохимия? Простые липиды включаю в себя лишь спирт и жирные кислоты, а сложные соответствуют своему названию. Помимо спирта, в их составе высокомолекулярные жиры, а также углеводы, остатки фосфорной кислоты. Это не единственная классификация липидов.

    Строение жиров

    Чем отличаются эти вещества? Биохимия изучила строение их молекул. У насыщенных жиров все химические связи заполнены молекулами водорода, а у ненасыщенных – нет. За счет этого отличается и их консистенция – ненасыщенные более жидкие.

    Ненасыщенные жиры дополнительно можно классифицировать на мононенасыщенные и полиненасыщенные. Первые имеют лишь одно вакантное место для водорода, а вторые – несколько, таково их строение.

    Мононенасыщенные жиры имеются в таких маслах, как оливковое, рапсовое, а также в рыбьем жире. Полиненасыщенные попадают в организм с подсолнечным маслом, жирной рыбой, орехами.

    Даже самый высокий холестерин можно снизить дома. Просто не забывайте один раз в день выпивать.

    Липопротеины

    Как говорилось выше, липиды нерастворимы в воде и переносятся специальными транспортерами. Комплекс с апопротеинами получил название – липопротеин. Биохимия этих веществ отличается плотностью и размерами молекул.

    Контроль этих веществ важен для своевременной профилактики атеросклероза. Развернутый анализ на липопротеины показан людям, склонным к этой патологии (факторы риска, наследственность). Показанием также является высокий уровень общего холестерина в крови.

    Роль в организме

    Какие значения вещества имеют в организме? Липиды участвуют практически во всех процессах в организме, поэтому их роль не ограничивается одной функцией. Вещества поддерживают жизнедеятельность уже на молекулярном и клеточном уровне.

    Структурная функция

    Биохимия изучила, что в мембранах липиды располагаются особым образом. Головки молекул являются гидрофобными и образуют одноименный слой, а хвостики – гидрофильные. Мембрана состоит из двух слоев липидов, которые притягиваются гидрофильными хвостиками. Так, формируется своеобразный барьер. Гидрофобный слой имеет огромную значимость, так как он обладает свойством непроницаемости для полярных соединений и ионов.

    Теплоизоляция и защита

    Жировые клетки накапливаются в подкожной клетчатке у теплокровных, благодаря чему потери тепла сокращаются. Многие органы имеют дополнительную прослойку, которая выполняет функцию механической защиты.

    Энергетическая функция
    Регуляторная функция

    Большинство гормонов имеют липидное строение (стероидные). Также эти вещества входят в состав эйкозаноидов. Гормоны участвуют в регуляции метаболизма, половой функции, регенерации. Они переносятся кровью, за счет чего могут действовать дистально, то есть далеко от места формирования.

    Липиды в рационе

    Питание должно быть сбалансированным. Оптимальным считается соотношение белков, жиров и углеводов – 1:1:4. Корректировки могут вноситься диетологом индивидуально для каждого случая.

    Классификация основывается на особенностях молекул (строение). Все эти вещества участвуют в поддержании гомеостаза, то есть постоянства, в организме. Без них существование невозможно. На основе природных липидов, биохимия которых тщательно изучена, были синтезированы лекарственные препараты, что успешно применяются в терапии.

    Полезная информация

    Лишний вес, усталость, боли в сердце и груди, вялое состояние, плохая память, покалывание в конечностях, отдышка даже при небольшой нагрузке, гипертония - всё это симптомы повышенного ХОЛЕСТЕРИНА! :

    Именно поэтому мы решили опубликовать эксклюзивное интервью флеболога , в котором раскрыт секрет как привести холестерин в норму!. Читать интервью.

    http://vseoholesterine.ru/lipidy/osobennosti-raznyx-klassov.html

    Особенности разных классов липидов и их функция

    Особенности нахождения в организме

    Большинство образует водорастворимые липопротеины, которые состоят из какого-либо липида и апопротеина. Таким образом транспортируются холестерин и его эфиры, триглицериды и фосфолипиды. Некоторые из липидов принимают участие в формировании наночастиц – липосом.

    Классификация

    Вещества липидной природы удобно классифицировать по структурным особенностям. Выделяют простые и сложные. Эти классы липидов имеют огромные отличия.

    Простые отличаются тем, что содержат три стандартных химических элемента – это кислород, углерод и водород. К этой группе относятся жирные кислоты, спирты и альдегиды, а также воски и триглицериды.

    Чем отличается биохимия? Простые липиды включаю в себя лишь спирт и жирные кислоты, а сложные соответствуют своему названию. Помимо спирта, в их составе высокомолекулярные жиры, а также углеводы, остатки фосфорной кислоты. Это не единственная классификация липидов.

    Строение жиров

    Чем отличаются эти вещества? Биохимия изучила строение их молекул. У насыщенных жиров все химические связи заполнены молекулами водорода, а у ненасыщенных – нет. За счет этого отличается и их консистенция – ненасыщенные более жидкие.

    Ненасыщенные жиры дополнительно можно классифицировать на мононенасыщенные и полиненасыщенные. Первые имеют лишь одно вакантное место для водорода, а вторые – несколько, таково их строение.

    Мононенасыщенные жиры имеются в таких маслах, как оливковое, рапсовое, а также в рыбьем жире. Полиненасыщенные попадают в организм с подсолнечным маслом, жирной рыбой, орехами.

    Даже самый высокий холестерин можно снизить дома. Просто не забывайте один раз в день выпивать.

    Липопротеины

    Как говорилось выше, липиды нерастворимы в воде и переносятся специальными транспортерами. Комплекс с апопротеинами получил название – липопротеин. Биохимия этих веществ отличается плотностью и размерами молекул.

    Контроль этих веществ важен для своевременной профилактики атеросклероза. Развернутый анализ на липопротеины показан людям, склонным к этой патологии (факторы риска, наследственность). Показанием также является высокий уровень общего холестерина в крови.

    Роль в организме

    Какие значения вещества имеют в организме? Липиды участвуют практически во всех процессах в организме, поэтому их роль не ограничивается одной функцией. Вещества поддерживают жизнедеятельность уже на молекулярном и клеточном уровне.

    Структурная функция

    Биохимия изучила, что в мембранах липиды располагаются особым образом. Головки молекул являются гидрофобными и образуют одноименный слой, а хвостики – гидрофильные. Мембрана состоит из двух слоев липидов, которые притягиваются гидрофильными хвостиками. Так, формируется своеобразный барьер. Гидрофобный слой имеет огромную значимость, так как он обладает свойством непроницаемости для полярных соединений и ионов.

    Теплоизоляция и защита

    Жировые клетки накапливаются в подкожной клетчатке у теплокровных, благодаря чему потери тепла сокращаются. Многие органы имеют дополнительную прослойку, которая выполняет функцию механической защиты.

    Энергетическая функция
    Регуляторная функция

    Большинство гормонов имеют липидное строение (стероидные). Также эти вещества входят в состав эйкозаноидов. Гормоны участвуют в регуляции метаболизма, половой функции, регенерации. Они переносятся кровью, за счет чего могут действовать дистально, то есть далеко от места формирования.

    Липиды в рационе

    Питание должно быть сбалансированным. Оптимальным считается соотношение белков, жиров и углеводов – 1:1:4. Корректировки могут вноситься диетологом индивидуально для каждого случая.

    Классификация основывается на особенностях молекул (строение). Все эти вещества участвуют в поддержании гомеостаза, то есть постоянства, в организме. Без них существование невозможно. На основе природных липидов, биохимия которых тщательно изучена, были синтезированы лекарственные препараты, что успешно применяются в терапии.

    Полезная информация

    Лишний вес, усталость, боли в сердце и груди, вялое состояние, плохая память, покалывание в конечностях, отдышка даже при небольшой нагрузке, гипертония - всё это симптомы повышенного ХОЛЕСТЕРИНА! :

    Именно поэтому мы решили опубликовать эксклюзивное интервью флеболога , в котором раскрыт секрет как привести холестерин в норму!. Читать интервью.

    http://vseoholesterine.ru/lipidy/osobennosti-raznyx-klassov.html

    Функции липидов

    Какие функции выполняют липиды

    Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

    К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

    Энергетический запас организма

    Структурные блоки

    Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

    1. холестерин – липофильный спирт;
    2. гликолипиды – соединения липидов с углеводами;
    3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

    Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

    Автономная система отопления

    «Золотой» запас индивидуума

    Такси заказывали?

    Второстепенные факторы

    Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

    Сигнальная функция
    Ферментативная функция
    Регуляторная функция

    Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

    Окисление липидов в организме – это различные типы реакций, которые имеют как положительные, так и отрицательные последствия для человеческого организма.

    Соединения липидов – это обширный класс химических элементов, включающий жиры, воски, определенные гормональные вещества. Их невозможно растворить в воде.

    Синтез липидов – этот процесс не может начинаться сразу после поступления жиров в желудок или кишечник. Для этого необходим процесс всасывания, который имеет свои особенности.

    Липиды это высокомолекулярные комплексные образования, состоящие из белков, а также полярных и неполярных липидов. Структура липопротеида такова, что внутри располагается ядро из неполярных липидов.

    http://sosudportal.ru/li/funkcii-lipidov.html Комментариев пока нет!

    www.doctortela.ru

    Лекция № 2. Строение и функции углеводов и липидов

    Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой Cn(h3O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

    Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

    Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

    Глюкоза, или виноградный сахар (С6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

    Глюкоза — это:

    1. один из самых распространенных моносахаридов,
    2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
    3. мономер многих олигосахаридов и полисахаридов,
    4. необходимый компонент крови.

    Купить проверочные работы по биологии

       

       

    Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

    Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной.

    Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

    Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

    Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2–8,5%).

    Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

    Крахмал (С6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

    Гликоген (С6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

    Целлюлоза (С6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

    Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

    Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

    Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

    Функции углеводов

    Строение и функции липидов

    Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам, говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

    Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2–. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной. Если жирная кислота не имеет двойных связей, ее называют насыщенной. При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

    Если в триглицеридах преобладают насыщенные жирные кислоты, то при 20°С они — твердые; их называют жирами, они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты, то при 20 °С они — жидкие; их называют маслами, они характерны для растительных клеток.

    1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота; 4 — гидрофильная головка; 5 — гидрофобный хвост.

    Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

    К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

    Сложные липиды. К ним относят фосфолипиды, гликолипиды, липопротеины и др.

    Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

    Гликолипиды — см. выше.

    Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

    Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

    Функции липидов

    • Перейти к лекции №1 «Введение. Химические элементы клетки. Вода и другие неорганические соединения»

    • Перейти к лекции №3 «Строение и функции белков. Ферменты»

    • Смотреть оглавление (лекции №1-25)

    licey.net


    Смотрите также